Home
Class 12
MATHS
int(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx...

`int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\pi}^{\frac{3\pi}{2}} \left( \sin^4 x + \cos^4 x \right) dx, \] we can follow these steps: ### Step 1: Rewrite the integrand We can use the identity for \(a^4 + b^4\): \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x. \] Since \(\sin^2 x + \cos^2 x = 1\), we have: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x. \] ### Step 2: Substitute into the integral Now we substitute this back into the integral: \[ I = \int_{\pi}^{\frac{3\pi}{2}} \left( 1 - 2\sin^2 x \cos^2 x \right) dx. \] ### Step 3: Simplify the integral We can separate the integral: \[ I = \int_{\pi}^{\frac{3\pi}{2}} 1 \, dx - 2 \int_{\pi}^{\frac{3\pi}{2}} \sin^2 x \cos^2 x \, dx. \] ### Step 4: Calculate the first integral The first integral is straightforward: \[ \int_{\pi}^{\frac{3\pi}{2}} 1 \, dx = \left[ x \right]_{\pi}^{\frac{3\pi}{2}} = \frac{3\pi}{2} - \pi = \frac{\pi}{2}. \] ### Step 5: Calculate the second integral For the second integral, we use the identity: \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x). \] Thus, we have: \[ \int_{\pi}^{\frac{3\pi}{2}} \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int_{\pi}^{\frac{3\pi}{2}} \sin^2(2x) \, dx. \] ### Step 6: Use the identity for \(\sin^2\) We can use the identity: \[ \sin^2(2x) = \frac{1 - \cos(4x)}{2}. \] So, \[ \int_{\pi}^{\frac{3\pi}{2}} \sin^2(2x) \, dx = \frac{1}{2} \int_{\pi}^{\frac{3\pi}{2}} (1 - \cos(4x)) \, dx. \] ### Step 7: Calculate the integral Now we can compute: \[ \int_{\pi}^{\frac{3\pi}{2}} 1 \, dx = \frac{\pi}{2}, \] and \[ \int_{\pi}^{\frac{3\pi}{2}} \cos(4x) \, dx = \left[ \frac{\sin(4x)}{4} \right]_{\pi}^{\frac{3\pi}{2}} = \frac{\sin(6\pi)}{4} - \frac{\sin(4\pi)}{4} = 0. \] Thus, \[ \int_{\pi}^{\frac{3\pi}{2}} \sin^2(2x) \, dx = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}. \] ### Step 8: Substitute back Now substituting back into our expression for \(I\): \[ I = \frac{\pi}{2} - 2 \cdot \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{8} = \frac{4\pi}{8} - \frac{\pi}{8} = \frac{3\pi}{8}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{3\pi}{8}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of int_(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

int_(0)^(pi//2) sin ^(4) x dx

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

int_(0)^(pi) sin^(4) x cos^(2)xdx =

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

Evaluate int_0^(pi/2)((sin^4x)/(sin^4x+cos^4x))dx

Evaluate: int_0^(pi/2) (sin2x)/(sin^4x+cos^4x)dx

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

Evaluate int_(0)^(pi)sin^(3)x*cos^(4)xdx