Home
Class 12
MATHS
If y = int(4)^(4x^(2))t^(4)e^(4t)dt, fin...

If `y = int_(4)^(4x^(2))t^(4)e^(4t)dt`, find `(d^(2)y)/(dx^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = \int_{4}^{4x^2} t^4 e^{4t} dt \), we will use the Fundamental Theorem of Calculus and the chain rule. ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the Fundamental Theorem of Calculus, we differentiate the integral with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \int_{4}^{4x^2} t^4 e^{4t} dt \right) \] By the chain rule, this becomes: \[ \frac{dy}{dx} = f(4x^2) \cdot \frac{d}{dx}(4x^2) - f(4) \cdot \frac{d}{dx}(4) \] Where \( f(t) = t^4 e^{4t} \). Since \( 4 \) is a constant, its derivative is \( 0 \). Now we compute \( f(4x^2) \): \[ f(4x^2) = (4x^2)^4 e^{4(4x^2)} = 256 x^8 e^{16x^2} \] Now, differentiate \( 4x^2 \): \[ \frac{d}{dx}(4x^2) = 8x \] Putting it all together, we have: \[ \frac{dy}{dx} = 256 x^8 e^{16x^2} \cdot 8x = 2048 x^9 e^{16x^2} \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Next, we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(2048 x^9 e^{16x^2}) \] Using the product rule: \[ \frac{d^2y}{dx^2} = 2048 \left( \frac{d}{dx}(x^9) e^{16x^2} + x^9 \frac{d}{dx}(e^{16x^2}) \right) \] Calculating each derivative: 1. \( \frac{d}{dx}(x^9) = 9x^8 \) 2. To differentiate \( e^{16x^2} \), we use the chain rule: \[ \frac{d}{dx}(e^{16x^2}) = e^{16x^2} \cdot \frac{d}{dx}(16x^2) = e^{16x^2} \cdot 32x \] Now substituting back into the equation: \[ \frac{d^2y}{dx^2} = 2048 \left( 9x^8 e^{16x^2} + x^9 \cdot 32x e^{16x^2} \right) \] Factoring out common terms: \[ \frac{d^2y}{dx^2} = 2048 e^{16x^2} \left( 9x^8 + 32x^{10} \right) \] Finally, we can factor out \( x^8 \): \[ \frac{d^2y}{dx^2} = 2048 e^{16x^2} x^8 (32x^2 + 9) \] ### Final Answer \[ \frac{d^2y}{dx^2} = 2048 e^{16x^2} x^8 (32x^2 + 9) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If y = int_(0)^(x^(2))ln(1+t) , then find (d^(2)y)/(dx^(2))

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

If y =log (1+ 2t^(2)+t^(4)), x= tan^(-1) t find (d^(2)y)/(dx^(2))

If (d)/(dx)(int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2)) sin^(2) tdt)=0, "find" (dy)/(dx).

If y = int_(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(2)) at x = e

If y=int_0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf(x)

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x)-1))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C, then

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. If int(0)^(x)f(t)dt = x^(2)-int(0)^(x^(2))(f(t))/(t)dt then find f(1).

    Text Solution

    |

  2. If f(x) = int(x)^(x^(2)) t^(2)lnt then find f'(e)

    Text Solution

    |

  3. If y = int(4)^(4x^(2))t^(4)e^(4t)dt, find (d^(2)y)/(dx^(2))

    Text Solution

    |

  4. If y = int(0)^(x^(2))ln(1+t), then find (d^(2)y)/(dx^(2))

    Text Solution

    |

  5. If int(0)^(x^(2)(1+x))f(t)dt=x, then the value of f(2) is.

    Text Solution

    |

  6. Find the value of ∫2x cos (x2 – 5).

    Text Solution

    |

  7. intsin^(11)xdx for x ∈ [0,π/2].

    Text Solution

    |

  8. int(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

    Text Solution

    |

  9. int(0)^(9) x(a^(2)-x^(2))^(7/2)dx

    Text Solution

    |

  10. int(0)^(2) sqrt(2-x)dx.

    Text Solution

    |

  11. Prove the following : int(0)^(1)e^(-x)cos^(2)xdx lt int(0)^(1)e^(-x^(2...

    Text Solution

    |

  12. Prove the following : 0 lt int(0)^(pi//2)sin^(n+1)xdx lt int(0)^(pi//2...

    Text Solution

    |

  13. Prove the following : e^(-(1)/(e)) lt int(0)^(1)x^(x)dx lt 1

    Text Solution

    |

  14. Prove the following: -1/2lt=int0^1(x^3cosx)/(2+x^2)dx<1/2

    Text Solution

    |

  15. Prove the following : 1 lt int(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

    Text Solution

    |

  16. Prove the following : 4/pi lt int(pi/4)^(pi/3) (tanx)/(x) lt (3sqrt(3)...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  18. lim(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

    Text Solution

    |

  19. The value of lim(nrarroo) 1/n^2[sin^(3)'(pi)/(4n)+2sin^(3)'(2pi)/(4n)+...

    Text Solution

    |

  20. lim(nrarroo) sum(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

    Text Solution

    |