Home
Class 12
MATHS
If y = int(4)^(4x^(2))t^(4)e^(4t)dt, fin...

If `y = int_(4)^(4x^(2))t^(4)e^(4t)dt`, find `(d^(2)y)/(dx^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = \int_{4}^{4x^2} t^4 e^{4t} dt \), we will use the Fundamental Theorem of Calculus and the chain rule. ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the Fundamental Theorem of Calculus, we differentiate the integral with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \int_{4}^{4x^2} t^4 e^{4t} dt \right) \] By the chain rule, this becomes: \[ \frac{dy}{dx} = f(4x^2) \cdot \frac{d}{dx}(4x^2) - f(4) \cdot \frac{d}{dx}(4) \] Where \( f(t) = t^4 e^{4t} \). Since \( 4 \) is a constant, its derivative is \( 0 \). Now we compute \( f(4x^2) \): \[ f(4x^2) = (4x^2)^4 e^{4(4x^2)} = 256 x^8 e^{16x^2} \] Now, differentiate \( 4x^2 \): \[ \frac{d}{dx}(4x^2) = 8x \] Putting it all together, we have: \[ \frac{dy}{dx} = 256 x^8 e^{16x^2} \cdot 8x = 2048 x^9 e^{16x^2} \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Next, we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(2048 x^9 e^{16x^2}) \] Using the product rule: \[ \frac{d^2y}{dx^2} = 2048 \left( \frac{d}{dx}(x^9) e^{16x^2} + x^9 \frac{d}{dx}(e^{16x^2}) \right) \] Calculating each derivative: 1. \( \frac{d}{dx}(x^9) = 9x^8 \) 2. To differentiate \( e^{16x^2} \), we use the chain rule: \[ \frac{d}{dx}(e^{16x^2}) = e^{16x^2} \cdot \frac{d}{dx}(16x^2) = e^{16x^2} \cdot 32x \] Now substituting back into the equation: \[ \frac{d^2y}{dx^2} = 2048 \left( 9x^8 e^{16x^2} + x^9 \cdot 32x e^{16x^2} \right) \] Factoring out common terms: \[ \frac{d^2y}{dx^2} = 2048 e^{16x^2} \left( 9x^8 + 32x^{10} \right) \] Finally, we can factor out \( x^8 \): \[ \frac{d^2y}{dx^2} = 2048 e^{16x^2} x^8 (32x^2 + 9) \] ### Final Answer \[ \frac{d^2y}{dx^2} = 2048 e^{16x^2} x^8 (32x^2 + 9) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If y = int_(0)^(x^(2))ln(1+t) , then find (d^(2)y)/(dx^(2))

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

Knowledge Check

  • If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

    A
    `(3)/(2)`
    B
    `(3)/(2)t`
    C
    `(3)/(2t)`
    D
    `(3)/(4t)`
  • Similar Questions

    Explore conceptually related problems

    If y =log (1+ 2t^(2)+t^(4)), x= tan^(-1) t find (d^(2)y)/(dx^(2))

    If (d)/(dx)(int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2)) sin^(2) tdt)=0, "find" (dy)/(dx).

    If y = int_(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(2)) at x = e

    If y=int_0^xf(t)sin{k(x-t)}dt, then prove that ((dt^2y)/(dx^2))+k^2y=kf(x)

    If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

    If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

    If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x)-1))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C, then