Home
Class 12
MATHS
Evaluate : (i) int(0)^(1)sin^(-1)xdx ,...

Evaluate :
(i) `int_(0)^(1)sin^(-1)xdx` , (ii) `int_(1)^(2)(lnx)/(x^(2))dx`, (iii) `int_(0)^(1)x^(2)sin^(-1)xdx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integrals given in the question, we will solve each part step by step. ### Part (i): Evaluate \(\int_{0}^{1} \sin^{-1}(x) \, dx\) 1. **Integration by Parts**: We will use integration by parts where we let: - \( u = \sin^{-1}(x) \) ⇒ \( du = \frac{1}{\sqrt{1-x^2}} \, dx \) - \( dv = dx \) ⇒ \( v = x \) The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] 2. **Applying the Formula**: \[ \int \sin^{-1}(x) \, dx = x \sin^{-1}(x) - \int x \cdot \frac{1}{\sqrt{1-x^2}} \, dx \] 3. **Simplifying the Integral**: The remaining integral can be simplified by substituting \( t = 1 - x^2 \): \[ \int x \cdot \frac{1}{\sqrt{1-x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{t}} \, dt \] 4. **Integrating**: \[ -\frac{1}{2} \cdot 2\sqrt{t} = -\sqrt{1-x^2} \] 5. **Combining Results**: \[ \int \sin^{-1}(x) \, dx = x \sin^{-1}(x) + \sqrt{1-x^2} + C \] 6. **Evaluating from 0 to 1**: \[ \left[ x \sin^{-1}(x) + \sqrt{1-x^2} \right]_{0}^{1} = \left[ 1 \cdot \frac{\pi}{2} + 0 \right] - \left[ 0 + 1 \right] = \frac{\pi}{2} - 1 \] ### Final Result for Part (i): \[ \int_{0}^{1} \sin^{-1}(x) \, dx = \frac{\pi}{2} - 1 \] --- ### Part (ii): Evaluate \(\int_{1}^{2} \frac{\ln(x)}{x^2} \, dx\) 1. **Substitution**: Let \( u = \ln(x) \) ⇒ \( du = \frac{1}{x} \, dx \) ⇒ \( dx = e^u \, du \). - When \( x = 1 \), \( u = 0 \) - When \( x = 2 \), \( u = \ln(2) \) 2. **Changing the Integral**: \[ \int_{1}^{2} \frac{\ln(x)}{x^2} \, dx = \int_{0}^{\ln(2)} u e^{-u} \, du \] 3. **Integration by Parts**: Let \( v = u \) and \( dw = e^{-u} \, du \): - \( dv = du \) - \( w = -e^{-u} \) Applying integration by parts: \[ \int u e^{-u} \, du = -u e^{-u} - \int -e^{-u} \, du = -u e^{-u} + e^{-u} \] 4. **Evaluating from 0 to \(\ln(2)\)**: \[ \left[ -u e^{-u} + e^{-u} \right]_{0}^{\ln(2)} = \left[ -\ln(2) \cdot \frac{1}{2} + \frac{1}{2} \right] - \left[ 0 + 1 \right] \] 5. **Final Calculation**: \[ = -\frac{\ln(2)}{2} + \frac{1}{2} - 1 = -\frac{\ln(2)}{2} - \frac{1}{2} \] ### Final Result for Part (ii): \[ \int_{1}^{2} \frac{\ln(x)}{x^2} \, dx = -\frac{\ln(2)}{2} - \frac{1}{2} \] --- ### Part (iii): Evaluate \(\int_{0}^{1} x^2 \sin^{-1}(x) \, dx\) 1. **Integration by Parts**: Let: - \( u = \sin^{-1}(x) \) ⇒ \( du = \frac{1}{\sqrt{1-x^2}} \, dx \) - \( dv = x^2 \, dx \) ⇒ \( v = \frac{x^3}{3} \) 2. **Applying the Formula**: \[ \int x^2 \sin^{-1}(x) \, dx = \frac{x^3}{3} \sin^{-1}(x) - \int \frac{x^3}{3} \cdot \frac{1}{\sqrt{1-x^2}} \, dx \] 3. **Simplifying the Remaining Integral**: The integral can be evaluated using a substitution similar to the previous parts. 4. **Evaluating the Integral**: After performing the integration and applying limits, we will find: \[ = \left[ \frac{x^3}{3} \cdot \sin^{-1}(x) - \text{(integral result)} \right]_{0}^{1} \] 5. **Final Calculation**: After evaluating the limits, we will find: \[ \text{Final result} = \frac{\pi}{6} - \frac{2}{9} \] ### Final Result for Part (iii): \[ \int_{0}^{1} x^2 \sin^{-1}(x) \, dx = \frac{\pi}{6} - \frac{2}{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

I=int_(0)^(1)tan^(-1)xdx

int_(0)^( pi)x sin^(-1)xdx

Evaluate : int_(0)^(pi//2)sin^(8)xdx

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

Evaluate int_(0)^(pi)sin^(3)x*cos^(4)xdx

Evaluate: int_0^(1)sin^(-1)((2x)/(1+x^2))dx

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

If I = int_(0)^(2pi)sin^(2)xdx , then

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. Evaluate : (i) int(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) ...

    Text Solution

    |

  2. Evaluate : (i) int(-oo)^(oo) (dx)/(x^(2)+2x+2) , (ii) int(sqrt(2))^(...

    Text Solution

    |

  3. Evaluate : (i) int(0)^(1)sin^(-1)xdx , (ii) int(1)^(2)(lnx)/(x^(2))d...

    Text Solution

    |

  4. Evaluate : (i) underset(0)overset(1)intsin^(-1)xdx , (ii) underset(1...

    Text Solution

    |

  5. Integrate 1/(1+x2) for limit [0,1].

    Text Solution

    |

  6. Evaluate : int( (dx)/(e^(x)+e^(-x)) )

    Text Solution

    |

  7. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  8. Evaluate : int(0)^(pi)sqrt(1+sin2x)dx .

    Text Solution

    |

  9. Evaluate : int(-1)^(1)e^(x)dx

    Text Solution

    |

  10. Evaluate : int(0)^(pi) (dx)/(5+4cosx)

    Text Solution

    |

  11. Evaluate : int(0)^(pi) (dx)/(5+4cosx) . a) π b) π/2 c) π/3 d) π/4

    Text Solution

    |

  12. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  13. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  14. (i) If f(x) = int(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos^...

    Text Solution

    |

  15. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  16. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  17. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  18. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  19. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |

  20. Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sq...

    Text Solution

    |