Home
Class 12
MATHS
Evaluate : (i) int(0)^(1)sin^(-1)xdx ,...

Evaluate :
(i) `int_(0)^(1)sin^(-1)xdx` , (ii) `int_(1)^(2)(lnx)/(x^(2))dx`, (iii) `int_(0)^(1)x^(2)sin^(-1)xdx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integrals given in the question, we will solve each part step by step. ### Part (i): Evaluate \(\int_{0}^{1} \sin^{-1}(x) \, dx\) 1. **Integration by Parts**: We will use integration by parts where we let: - \( u = \sin^{-1}(x) \) ⇒ \( du = \frac{1}{\sqrt{1-x^2}} \, dx \) - \( dv = dx \) ⇒ \( v = x \) The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] 2. **Applying the Formula**: \[ \int \sin^{-1}(x) \, dx = x \sin^{-1}(x) - \int x \cdot \frac{1}{\sqrt{1-x^2}} \, dx \] 3. **Simplifying the Integral**: The remaining integral can be simplified by substituting \( t = 1 - x^2 \): \[ \int x \cdot \frac{1}{\sqrt{1-x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{t}} \, dt \] 4. **Integrating**: \[ -\frac{1}{2} \cdot 2\sqrt{t} = -\sqrt{1-x^2} \] 5. **Combining Results**: \[ \int \sin^{-1}(x) \, dx = x \sin^{-1}(x) + \sqrt{1-x^2} + C \] 6. **Evaluating from 0 to 1**: \[ \left[ x \sin^{-1}(x) + \sqrt{1-x^2} \right]_{0}^{1} = \left[ 1 \cdot \frac{\pi}{2} + 0 \right] - \left[ 0 + 1 \right] = \frac{\pi}{2} - 1 \] ### Final Result for Part (i): \[ \int_{0}^{1} \sin^{-1}(x) \, dx = \frac{\pi}{2} - 1 \] --- ### Part (ii): Evaluate \(\int_{1}^{2} \frac{\ln(x)}{x^2} \, dx\) 1. **Substitution**: Let \( u = \ln(x) \) ⇒ \( du = \frac{1}{x} \, dx \) ⇒ \( dx = e^u \, du \). - When \( x = 1 \), \( u = 0 \) - When \( x = 2 \), \( u = \ln(2) \) 2. **Changing the Integral**: \[ \int_{1}^{2} \frac{\ln(x)}{x^2} \, dx = \int_{0}^{\ln(2)} u e^{-u} \, du \] 3. **Integration by Parts**: Let \( v = u \) and \( dw = e^{-u} \, du \): - \( dv = du \) - \( w = -e^{-u} \) Applying integration by parts: \[ \int u e^{-u} \, du = -u e^{-u} - \int -e^{-u} \, du = -u e^{-u} + e^{-u} \] 4. **Evaluating from 0 to \(\ln(2)\)**: \[ \left[ -u e^{-u} + e^{-u} \right]_{0}^{\ln(2)} = \left[ -\ln(2) \cdot \frac{1}{2} + \frac{1}{2} \right] - \left[ 0 + 1 \right] \] 5. **Final Calculation**: \[ = -\frac{\ln(2)}{2} + \frac{1}{2} - 1 = -\frac{\ln(2)}{2} - \frac{1}{2} \] ### Final Result for Part (ii): \[ \int_{1}^{2} \frac{\ln(x)}{x^2} \, dx = -\frac{\ln(2)}{2} - \frac{1}{2} \] --- ### Part (iii): Evaluate \(\int_{0}^{1} x^2 \sin^{-1}(x) \, dx\) 1. **Integration by Parts**: Let: - \( u = \sin^{-1}(x) \) ⇒ \( du = \frac{1}{\sqrt{1-x^2}} \, dx \) - \( dv = x^2 \, dx \) ⇒ \( v = \frac{x^3}{3} \) 2. **Applying the Formula**: \[ \int x^2 \sin^{-1}(x) \, dx = \frac{x^3}{3} \sin^{-1}(x) - \int \frac{x^3}{3} \cdot \frac{1}{\sqrt{1-x^2}} \, dx \] 3. **Simplifying the Remaining Integral**: The integral can be evaluated using a substitution similar to the previous parts. 4. **Evaluating the Integral**: After performing the integration and applying limits, we will find: \[ = \left[ \frac{x^3}{3} \cdot \sin^{-1}(x) - \text{(integral result)} \right]_{0}^{1} \] 5. **Final Calculation**: After evaluating the limits, we will find: \[ \text{Final result} = \frac{\pi}{6} - \frac{2}{9} \] ### Final Result for Part (iii): \[ \int_{0}^{1} x^2 \sin^{-1}(x) \, dx = \frac{\pi}{6} - \frac{2}{9} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

I=int_(0)^(1)tan^(-1)xdx

int_(0)^( pi)x sin^(-1)xdx

Evaluate : int_(0)^(pi//2)sin^(8)xdx

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

Evaluate int_(0)^(pi)sin^(3)x*cos^(4)xdx

Evaluate: int_0^(1)sin^(-1)((2x)/(1+x^2))dx

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

If I = int_(0)^(2pi)sin^(2)xdx , then

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx