Home
Class 12
MATHS
Let f be a differentiable function on R ...

Let `f` be a differentiable function on `R` and satisfying the integral equation
`x int_(0)^(x)f(t)dt-int_(0)^(x)tf(x-t)dt=e^(x)-1 AA x in R`. Then `f(1)` equals to ___

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Write down the integral equation We start with the integral equation given in the problem: \[ x \int_{0}^{x} f(t) dt - \int_{0}^{x} t f(x - t) dt = e^{x} - 1 \] ### Step 2: Change the variable in the second integral In the second integral, we can change the variable \( t \) to \( x - t \). Thus, we have: \[ \int_{0}^{x} t f(x - t) dt = \int_{0}^{x} (x - u) f(u) du \] where \( u = x - t \) and \( dt = -du \). ### Step 3: Rewrite the second integral Substituting \( u \) back into the integral, we can express it as: \[ \int_{0}^{x} t f(x - t) dt = \int_{0}^{x} (x - u) f(u) du = x \int_{0}^{x} f(u) du - \int_{0}^{x} u f(u) du \] ### Step 4: Substitute back into the original equation Now, substituting this back into the original equation gives us: \[ x \int_{0}^{x} f(t) dt - \left( x \int_{0}^{x} f(t) dt - \int_{0}^{x} t f(t) dt \right) = e^{x} - 1 \] This simplifies to: \[ \int_{0}^{x} t f(t) dt = e^{x} - 1 \] ### Step 5: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx} \left( \int_{0}^{x} t f(t) dt \right) = \frac{d}{dx} (e^{x} - 1) \] Using the Leibniz rule for differentiation of integrals, we have: \[ x f(x) = e^{x} \] ### Step 6: Solve for \( f(x) \) From the equation \( x f(x) = e^{x} \), we can solve for \( f(x) \): \[ f(x) = \frac{e^{x}}{x} \] ### Step 7: Find \( f(1) \) Now, we need to find \( f(1) \): \[ f(1) = \frac{e^{1}}{1} = e \] ### Conclusion Thus, the value of \( f(1) \) is: \[ \boxed{e} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

Let f:(0,oo)vec(0,oo) be a differentiable function satisfying, xint_0^x(1-t)f(t)dt=int_0^x tf(t)dtx in R^+a n df(1)=1. Determine f(x)dot