Home
Class 12
MATHS
If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln...

If `int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C,` then `A+B` equals to :

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx, \] we will simplify the integrand and then integrate term by term. ### Step 1: Simplifying the Integrand We start with the expression: \[ \frac{x^4 + 1}{x(x^2 + 1)^2}. \] We can rewrite \(x^4 + 1\) by adding and subtracting \(2x^2\): \[ x^4 + 1 = x^4 + 2x^2 - 2x^2 + 1 = (x^4 + 2x^2 + 1) - 2x^2 = (x^2 + 1)^2 - 2x^2. \] Thus, we can rewrite the integrand as: \[ \frac{(x^2 + 1)^2 - 2x^2}{x(x^2 + 1)^2} = \frac{(x^2 + 1)^2}{x(x^2 + 1)^2} - \frac{2x^2}{x(x^2 + 1)^2}. \] This simplifies to: \[ \frac{1}{x} - \frac{2x}{(x^2 + 1)^2}. \] ### Step 2: Splitting the Integral Now we can split the integral into two parts: \[ \int \left( \frac{1}{x} - \frac{2x}{(x^2 + 1)^2} \right) \, dx = \int \frac{1}{x} \, dx - 2 \int \frac{x}{(x^2 + 1)^2} \, dx. \] ### Step 3: Integrating the First Part The first integral is straightforward: \[ \int \frac{1}{x} \, dx = \ln |x|. \] ### Step 4: Integrating the Second Part For the second integral, we use the substitution \(u = x^2 + 1\), which gives \(du = 2x \, dx\) or \(dx = \frac{du}{2x}\). Thus, \[ \int \frac{x}{(x^2 + 1)^2} \, dx = \int \frac{x}{u^2} \cdot \frac{du}{2x} = \frac{1}{2} \int \frac{1}{u^2} \, du. \] Integrating \(\frac{1}{u^2}\) gives: \[ \frac{1}{2} \left( -\frac{1}{u} \right) = -\frac{1}{2(x^2 + 1)}. \] ### Step 5: Combining the Results Putting it all together, we have: \[ \int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx = \ln |x| - 2 \left( -\frac{1}{2(x^2 + 1)} \right) + C = \ln |x| + \frac{1}{x^2 + 1} + C. \] ### Step 6: Identifying Constants A, B, and C From the expression: \[ \int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx = A \ln |x| + \frac{B}{1 + x^2} + C, \] we can identify: - \(A = 1\) - \(B = 1\) ### Final Step: Calculating A + B Thus, \[ A + B = 1 + 1 = 2. \] ### Conclusion The final answer is: \[ \boxed{2}. \]

To solve the integral \[ \int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx, \] we will simplify the integrand and then integrate term by term. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise COMPREHENSION|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-13|9 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(x^4+1)/(x(x^2+1)^2)dx=Aln|x|+B/(1+x^2)+C ,

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

If int x log (1+x^(2))dx= phi (x) log (1+x^(2))+x(Psi)+C , then

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

If int(2^(1setminusx))/(x^2)\ dx=k\ 2^(1setminusx)+C , then k is equal to -1/((log)_e2) (b) (log)_e2 (c) -1 (d) 1/2

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c

If int_(0)^(1)(ax+b)/(x^(2)+3x+2)dx=ln.(3)/(2) , then

int x ^(x ^(2)+1) (2ln x+1)dx