Home
Class 12
MATHS
If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln...

If `int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C,` then `A+B` equals to :

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx, \] we will simplify the integrand and then integrate term by term. ### Step 1: Simplifying the Integrand We start with the expression: \[ \frac{x^4 + 1}{x(x^2 + 1)^2}. \] We can rewrite \(x^4 + 1\) by adding and subtracting \(2x^2\): \[ x^4 + 1 = x^4 + 2x^2 - 2x^2 + 1 = (x^4 + 2x^2 + 1) - 2x^2 = (x^2 + 1)^2 - 2x^2. \] Thus, we can rewrite the integrand as: \[ \frac{(x^2 + 1)^2 - 2x^2}{x(x^2 + 1)^2} = \frac{(x^2 + 1)^2}{x(x^2 + 1)^2} - \frac{2x^2}{x(x^2 + 1)^2}. \] This simplifies to: \[ \frac{1}{x} - \frac{2x}{(x^2 + 1)^2}. \] ### Step 2: Splitting the Integral Now we can split the integral into two parts: \[ \int \left( \frac{1}{x} - \frac{2x}{(x^2 + 1)^2} \right) \, dx = \int \frac{1}{x} \, dx - 2 \int \frac{x}{(x^2 + 1)^2} \, dx. \] ### Step 3: Integrating the First Part The first integral is straightforward: \[ \int \frac{1}{x} \, dx = \ln |x|. \] ### Step 4: Integrating the Second Part For the second integral, we use the substitution \(u = x^2 + 1\), which gives \(du = 2x \, dx\) or \(dx = \frac{du}{2x}\). Thus, \[ \int \frac{x}{(x^2 + 1)^2} \, dx = \int \frac{x}{u^2} \cdot \frac{du}{2x} = \frac{1}{2} \int \frac{1}{u^2} \, du. \] Integrating \(\frac{1}{u^2}\) gives: \[ \frac{1}{2} \left( -\frac{1}{u} \right) = -\frac{1}{2(x^2 + 1)}. \] ### Step 5: Combining the Results Putting it all together, we have: \[ \int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx = \ln |x| - 2 \left( -\frac{1}{2(x^2 + 1)} \right) + C = \ln |x| + \frac{1}{x^2 + 1} + C. \] ### Step 6: Identifying Constants A, B, and C From the expression: \[ \int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx = A \ln |x| + \frac{B}{1 + x^2} + C, \] we can identify: - \(A = 1\) - \(B = 1\) ### Final Step: Calculating A + B Thus, \[ A + B = 1 + 1 = 2. \] ### Conclusion The final answer is: \[ \boxed{2}. \]

To solve the integral \[ \int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx, \] we will simplify the integrand and then integrate term by term. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise COMPREHENSION|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-13|9 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(x^4+1)/(x(x^2+1)^2)dx=Aln|x|+B/(1+x^2)+C ,

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

If int x log (1+x^(2))dx= phi (x) log (1+x^(2))+x(Psi)+C , then

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

If int(2^(1setminusx))/(x^2)\ dx=k\ 2^(1setminusx)+C , then k is equal to -1/((log)_e2) (b) (log)_e2 (c) -1 (d) 1/2

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c

If int_(0)^(1)(ax+b)/(x^(2)+3x+2)dx=ln.(3)/(2) , then

int x ^(x ^(2)+1) (2ln x+1)dx

RESONANCE ENGLISH-INDEFINITE INTEGRATION -SINGLE AND DOUBLE VALUE INTEGER TYPE
  1. If f(x) = int(2sinx-sin2x)/(x^(3))dx, where xne0, then Limit(xto0) f^(...

    Text Solution

    |

  2. If int sin^4 x cos^4 x dx=1/128 [ax-sin4x+1/8 sin8x]+c then a=

    Text Solution

    |

  3. Let F(x) be the primitive of (3x+2)/(sqrt(x-9)) w.r.t. x. If F(10)=60...

    Text Solution

    |

  4. If int(sqrt(4+x^2))/(x^6)dx = ((a+x^2)^(3/2).(x^2-b))/(120x^5)+C the...

    Text Solution

    |

  5. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  6. If int x/sqrt(1+x^2+sqrt((1+x^2)^3)dx= ksqrt(1+sqrt(1+x^2))+c. find k

    Text Solution

    |

  7. If inte^(sinx).(xcos^(3)x-sinx)/(cos^(2)x)dx=e^(sinx)f(x)+C, such that...

    Text Solution

    |

  8. Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0. then the value of 8g(...

    Text Solution

    |

  9. If f(x) =sqrt(x-1),g(x)=e^(x) and intfog(x)dx=Afog(x)+Btan^(-1)(fogx)+...

    Text Solution

    |

  10. If int(2sin2phi-cosphi)/(6-cos^(2)phi-4sinphi)dphi=p" ln "|sin^(2)phi-...

    Text Solution

    |

  11. if int (x-1)^2/(x^4+x^2+1)dx=1/sqrta tan^-1 ((x^2-1)/(xsqrt3))-b/sqrta...

    Text Solution

    |

  12. If int(1+xcosx)/(x(1-x^(2)e^(2sinx)))dx = k" ln "sqrt((x^(2)e^(2 sinx)...

    Text Solution

    |

  13. If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B eq...

    Text Solution

    |

  14. If int 1/(1-sin^4x)dx=1/(asqrtb)+tan^(- 1)(sqrt(a)tanx)+1/btanx+C the...

    Text Solution

    |

  15. If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(...

    Text Solution

    |

  16. If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, t...

    Text Solution

    |