Home
Class 12
MATHS
If a^2+b^2+c^2=1, then prove that |[a^...

If `a^2+b^2+c^2=1,` then prove that `|[a^2 +(b^2+c^2)cosθ, ab(1−cosθ), ac(1−cosθ)],[ba(1−cosθ),b^2(c^2+a^2)cosθ,bc(1−cosθ)],[ca(1−cosθ),cb(1−cosθ),c^2+(a^2+b^2)cosθ]|` independent of a,b,c?

Answer

Step by step text solution for If a^2+b^2+c^2=1, then prove that |[a^2 +(b^2+c^2)cosθ, ab(1−cosθ), ac(1−cosθ)],[ba(1−cosθ),b^2(c^2+a^2)cosθ,bc(1−cosθ)],[ca(1−cosθ),cb(1−cosθ),c^2+(a^2+b^2)cosθ]| independent of a,b,c? by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II:|28 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that : (cosecθ−cotθ)^2 = (1+cosθ)/(1−cosθ) ​

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Prove the identity: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

(sinθ+cosθ)(1−sinθcosθ) can be written as :

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|