Home
Class 12
MATHS
Flind the product of two matrices A =[...

Flind the product of two matrices
`A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]]`
Show that, AB is the zero matrix if `theta and phi` differ by an
odd multipl of `pi/2`.

A

5(6!)

B

3(6!)

C

12(6!)

D

8(6!)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the two matrices \( A \) and \( B \) and show that the product \( AB \) is the zero matrix when \( \theta \) and \( \phi \) differ by an odd multiple of \( \frac{\pi}{2} \). ### Step 1: Define the Matrices Let: \[ A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix} \] \[ B = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix} \] ### Step 2: Calculate the Product \( AB \) The product \( AB \) is calculated as follows: \[ AB = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix} \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix} \] Calculating the elements of the resulting matrix: 1. **First Element**: \[ (AB)_{11} = \cos^2 \theta \cdot \cos^2 \phi + \cos \theta \sin \theta \cdot \cos \phi \sin \phi \] \[ = \cos^2 \theta \cos^2 \phi + \cos \theta \sin \theta \cos \phi \sin \phi \] 2. **Second Element**: \[ (AB)_{12} = \cos^2 \theta \cdot \cos \phi \sin \phi + \cos \theta \sin \theta \cdot \sin^2 \phi \] \[ = \cos^2 \theta \cos \phi \sin \phi + \cos \theta \sin \theta \sin^2 \phi \] 3. **Third Element**: \[ (AB)_{21} = \cos \theta \sin \theta \cdot \cos^2 \phi + \sin^2 \theta \cdot \cos \phi \sin \phi \] \[ = \cos \theta \sin \theta \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi \] 4. **Fourth Element**: \[ (AB)_{22} = \cos \theta \sin \theta \cdot \cos \phi \sin \phi + \sin^2 \theta \cdot \sin^2 \phi \] \[ = \cos \theta \sin \theta \cos \phi \sin \phi + \sin^2 \theta \sin^2 \phi \] ### Step 3: Combine the Results Now, we can write the product matrix \( AB \): \[ AB = \begin{bmatrix} \cos^2 \theta \cos^2 \phi + \cos \theta \sin \theta \cos \phi \sin \phi & \cos^2 \theta \cos \phi \sin \phi + \cos \theta \sin \theta \sin^2 \phi \\ \cos \theta \sin \theta \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi & \cos \theta \sin \theta \cos \phi \sin \phi + \sin^2 \theta \sin^2 \phi \end{bmatrix} \] ### Step 4: Factor Out Common Terms We can factor out common terms in each element: 1. **First Element**: \[ = \cos^2 \phi (\cos^2 \theta + \sin^2 \theta) + \cos \phi \sin \phi (\cos \theta \sin \theta) \] Since \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ = \cos^2 \phi + \cos \phi \sin \phi \cos \theta \sin \theta \] 2. **Second Element**: \[ = \cos \phi \sin \phi (\cos^2 \theta + \sin^2 \theta) + \sin^2 \phi \cos \theta \sin \theta \] \[ = \cos \phi \sin \phi + \sin^2 \phi \cos \theta \sin \theta \] 3. **Third Element**: \[ = \cos^2 \phi \cos \theta \sin \theta + \sin \phi \cos \phi \sin^2 \theta \] 4. **Fourth Element**: \[ = \cos \phi \sin \phi \sin^2 \theta + \sin^2 \phi \cos \theta \sin \theta \] ### Step 5: Show \( AB = 0 \) under Conditions Now, we need to show that \( AB \) is the zero matrix when \( \theta - \phi = (2n + 1) \frac{\pi}{2} \). Using the identity: \[ \cos(\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi \] If \( \theta - \phi = (2n + 1) \frac{\pi}{2} \), then: \[ \cos(\theta - \phi) = 0 \] This implies: \[ \cos \theta \cos \phi + \sin \theta \sin \phi = 0 \] Thus, each term in the product matrix \( AB \) will become zero, leading to: \[ AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \] ### Conclusion Therefore, we have shown that \( AB \) is the zero matrix when \( \theta \) and \( \phi \) differ by an odd multiple of \( \frac{\pi}{2} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

Knowledge Check

  • sin^(3)theta + sin theta - sin theta cos^(2)theta =

    A
    0
    B
    `sin theta`
    C
    `sin 2 theta`
    D
    `2sin^(3)theta`
  • Similar Questions

    Explore conceptually related problems

    If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

    If A=[[cos theta, sin theta],[sin theta, cos theta]],B=[[cos phi, sin phi],[sin phi, cos phi]] show that AB=BA.

    If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]] , find A^2

    Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

    Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

    Prove that (cos theta+sin theta )^2 + (cos theta - sin theta )^2 =2

    1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).