Home
Class 12
MATHS
[{:(,x^(2)+x,-1),(,3,2):}]+[{:(,0,-1),(,...

`[{:(,x^(2)+x,-1),(,3,2):}]+[{:(,0,-1),(,-x+1,x):}]=[{:(,0,-2),(,5,1):}]` then x is equalto-

A

`-1`

B

2

C

`4`

D

No value of x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrices, we need to perform the addition of the two matrices and then set them equal to the third matrix. Let's break this down step by step. ### Step 1: Write down the matrices We have the following matrices: 1. \( A = \begin{pmatrix} x^2 + x & -1 \\ 3 & 2 \end{pmatrix} \) 2. \( B = \begin{pmatrix} 0 & -1 \\ -x + 1 & x \end{pmatrix} \) 3. \( C = \begin{pmatrix} 0 & -2 \\ 5 & 1 \end{pmatrix} \) ### Step 2: Add matrices A and B We will add matrices A and B element-wise: \[ A + B = \begin{pmatrix} (x^2 + x) + 0 & -1 + (-1) \\ 3 + (-x + 1) & 2 + x \end{pmatrix} \] This simplifies to: \[ A + B = \begin{pmatrix} x^2 + x & -2 \\ 4 - x & 2 + x \end{pmatrix} \] ### Step 3: Set the sum equal to matrix C Now we set the resulting matrix equal to matrix C: \[ \begin{pmatrix} x^2 + x & -2 \\ 4 - x & 2 + x \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 5 & 1 \end{pmatrix} \] ### Step 4: Equate corresponding elements From the equality of the matrices, we can form the following equations: 1. \( x^2 + x = 0 \) 2. \( -2 = -2 \) (This is always true) 3. \( 4 - x = 5 \) 4. \( 2 + x = 1 \) ### Step 5: Solve the equations 1. From \( x^2 + x = 0 \): \[ x(x + 1) = 0 \implies x = 0 \text{ or } x = -1 \] 2. From \( 4 - x = 5 \): \[ -x = 1 \implies x = -1 \] 3. From \( 2 + x = 1 \): \[ x = 1 - 2 \implies x = -1 \] ### Conclusion The consistent solution across all equations is \( x = -1 \). Therefore, the value of \( x \) is: \[ \boxed{-1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

Knowledge Check

  • Solve for X : [(1,2,-3),(2,1,3)]-X=[(5,1,8),(-6,0,5)] .

    A
    `[(4,1,-11),(-8,1,-2)]`
    B
    `[(-4,1,-11),(8,1,-2)]`
    C
    `[(-5,-2,24),(12,0,-15)]`
    D
    `[(5,2,-24),(-12,0,15)]`
  • Similar Questions

    Explore conceptually related problems

    If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

    If |[2x,-1],[4,2]|=|[3,0],[2,1]| then "x" is

    If A is a square matrix of any order then |A-x|=0 is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if A=[(1,2),(1,5)], Then [(A-xI)], = [(1,2),(1,5)]-[(x,0),(0,x)]=[(1-x,2),(1-0,5-x)]=[(1-x,2),(1,5-x)] Characteristic equation of matrix A is |(1-x,2),(1,5-x)|=0 or (1-x)(5-x)(0-2)=0 or x^2-6x+3=0 Matrix A will satisfy this equation ie. A^2-6A+3I=0 . A^-1 can be determined by multiplying both sides of this equation. Let A=[(1,0,0),(0,1,1),(1,-2,4)] On the basis for above information answer the following questions:Sum of elements of A^-1 is (A) 2 (B) -2 (C) 6 (D) none of these

    Let x=|(x1),(x2),(x3)|,A=|(1,-1, 2),( 2, 0, 1),( 3, 2, 1)|a n d B=[(3),( 2),( 1)]dotIfA X=B , Then X is equal to

    find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0

    If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0),(x,0,5)|=0, then the value of x equals (x in R):

    Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is