Home
Class 12
MATHS
If alpha, beta are the roots of the qua...

If `alpha, beta` are the roots of the quadratic equation `cx^2- 2bx + 4a = 0` then find the quadratic equation whose roots are:
(i) `alpha/2, beta/2`, (ii) `alpha^(2), beta^(2)`, (iii) `alpha + 1, beta+1`, (iv) `(1+alpha)/(1-alpha) (1+beta)/(1-beta)`, (v) `alpha/beta, beta/alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To find the quadratic equations with the specified roots based on the quadratic equation \( cx^2 - 2bx + 4a = 0 \) with roots \( \alpha \) and \( \beta \), we will use the relationships between the roots and coefficients of the quadratic equation. ### Step-by-Step Solution: 1. **Identify the Sum and Product of Roots**: - From the given equation \( cx^2 - 2bx + 4a = 0 \), we can express the sum and product of the roots: - Sum of roots \( \alpha + \beta = \frac{2b}{c} \) - Product of roots \( \alpha \beta = \frac{4a}{c} \) 2. **(i) Roots: \( \frac{\alpha}{2}, \frac{\beta}{2} \)**: - **Sum**: \[ \frac{\alpha}{2} + \frac{\beta}{2} = \frac{\alpha + \beta}{2} = \frac{2b}{2c} = \frac{b}{c} \] - **Product**: \[ \frac{\alpha}{2} \cdot \frac{\beta}{2} = \frac{\alpha \beta}{4} = \frac{4a}{4c} = \frac{a}{c} \] - **Quadratic Equation**: \[ x^2 - \left(\frac{b}{c}\right)x + \frac{a}{c} = 0 \implies cx^2 - bx + a = 0 \] 3. **(ii) Roots: \( \alpha^2, \beta^2 \)**: - **Sum**: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(\frac{2b}{c}\right)^2 - 2\left(\frac{4a}{c}\right) = \frac{4b^2}{c^2} - \frac{8a}{c} \] - **Product**: \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{4a}{c}\right)^2 = \frac{16a^2}{c^2} \] - **Quadratic Equation**: \[ x^2 - \left(\frac{4b^2 - 8ac}{c^2}\right)x + \frac{16a^2}{c^2} = 0 \implies c^2x^2 - (4b^2 - 8ac)x + 16a^2 = 0 \] 4. **(iii) Roots: \( \alpha + 1, \beta + 1 \)**: - **Sum**: \[ (\alpha + 1) + (\beta + 1) = \alpha + \beta + 2 = \frac{2b}{c} + 2 = \frac{2b + 2c}{c} \] - **Product**: \[ (\alpha + 1)(\beta + 1) = \alpha\beta + \alpha + \beta + 1 = \frac{4a}{c} + \frac{2b}{c} + 1 = \frac{4a + 2b + c}{c} \] - **Quadratic Equation**: \[ x^2 - \left(\frac{2b + 2c}{c}\right)x + \frac{4a + 2b + c}{c} = 0 \implies cx^2 - (2b + 2c)x + (4a + 2b + c) = 0 \] 5. **(iv) Roots: \( \frac{1 + \alpha}{1 - \alpha}, \frac{1 + \beta}{1 - \beta} \)**: - **Sum**: \[ \frac{1 + \alpha}{1 - \alpha} + \frac{1 + \beta}{1 - \beta} = \frac{(1 + \alpha)(1 - \beta) + (1 + \beta)(1 - \alpha)}{(1 - \alpha)(1 - \beta)} = \frac{2 - (\alpha + \beta) + \alpha \beta}{1 - (\alpha + \beta) + \alpha \beta} \] - **Product**: \[ \frac{(1 + \alpha)(1 + \beta)}{(1 - \alpha)(1 - \beta)} = \frac{1 + \alpha + \beta + \alpha\beta}{1 - (\alpha + \beta) + \alpha\beta} \] - **Quadratic Equation**: \[ \text{(This step requires further simplification)} \] 6. **(v) Roots: \( \frac{\alpha}{\beta}, \frac{\beta}{\alpha} \)**: - **Sum**: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{\left(\frac{2b}{c}\right)^2 - 2\left(\frac{4a}{c}\right)}{\frac{4a}{c}} = \frac{4b^2 - 8ac}{4a} \] - **Product**: \[ \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1 \] - **Quadratic Equation**: \[ x^2 - \left(\frac{4b^2 - 8ac}{4a}\right)x + 1 = 0 \implies 4ax^2 - (4b^2 - 8ac)x + 4a = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -1: PRE RMO) |46 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -II: RMO) |9 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the quadratic equation x^(2) + px + q = 0 , then form the quadratic equation whose roots are alpha + (1)/(beta), beta + (1)/(alpha)

If alphaandbeta be the roots of the quadratic equation x^(2)+px+q=0 , then find the quadratic equation whose roots are (alpha-beta)^(2)and(alpha+beta)^(2) .

IF alpha , beta are the roots of the equation ax^2+ bx +c=0 then the quadratic equation whose roots are alpha + beta , alpha beta is

If alpha, beta are the roots of ax^(2) + bx + c = 0 , then find the quadratic equation whose roots are alpha + beta, alpha beta .

If alpha, beta are the roots of the quadratic equation ax^(2)+bx+c=0, form a quadratic equation whose roots are alpha^(2)+beta^(2) and alpha^(-2) + beta^(-2) .

Let alpha and beta be the roots of the quadratic equation ax^(2)+bx+c=0, c ne 0, then form the quadratic equation whose roots are (1-alpha)/(alpha) and (1-beta)/(beta) .

If alpha,beta are the roots of the equation ax^2 + bx +c=0 such that beta < alpha < 0 , then the quadratic equation whose roots are |alpha|,|beta| is given by

If alpha and beta are roots of the quadratic equation x ^(2) + 4x +3=0, then the equation whose roots are 2 alpha + beta and alpha + 2 beta is :

If alphabeta the roots of the equation x^2-x-1=0 , then the quadratic equation whose roots are (1 + alpha)/(2 -alpha),(1 + beta)/(2 - beta)

IF alpha , beta are the roots of the equation x^2+2ax +b=0 , then the quadratic equation with rational coefficient one of whose roots is alpha + beta + sqrt(alpha ^2+ beta ^2) is