Home
Class 12
MATHS
Let a, b and c be such that a + b + c= 0...

Let a, b and c be such that a + b + c= 0 and `P=a^(2)/(2a^(2)+ bc) + b^(2)/(2b^(2) + ca) + c^(2)/(2c^(2) + ab)` is defined. What is the value of P.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( P \) given that \( a + b + c = 0 \) and \[ P = \frac{a^2}{2a^2 + bc} + \frac{b^2}{2b^2 + ca} + \frac{c^2}{2c^2 + ab}. \] ### Step 1: Substitute \( c \) in terms of \( a \) and \( b \) Since we know that \( a + b + c = 0 \), we can express \( c \) as: \[ c = -a - b. \] ### Step 2: Substitute \( c \) into \( P \) Now we substitute \( c \) into the expression for \( P \): \[ P = \frac{a^2}{2a^2 + b(-a-b)} + \frac{b^2}{2b^2 + (-a-b)a} + \frac{(-a-b)^2}{2(-a-b)^2 + ab}. \] ### Step 3: Simplify each term 1. **First term**: \[ P_1 = \frac{a^2}{2a^2 - ab - b^2} = \frac{a^2}{2a^2 - ab - b^2}. \] 2. **Second term**: \[ P_2 = \frac{b^2}{2b^2 - a^2 - ab} = \frac{b^2}{2b^2 - a^2 - ab}. \] 3. **Third term**: \[ P_3 = \frac{(-a-b)^2}{2(-a-b)^2 + ab} = \frac{(a+b)^2}{2(a+b)^2 + ab}. \] ### Step 4: Combine the terms Now we will combine \( P_1, P_2, \) and \( P_3 \): \[ P = P_1 + P_2 + P_3. \] ### Step 5: Analyze the symmetry Notice that the expression for \( P \) is symmetric in \( a, b, c \). Given the condition \( a + b + c = 0 \), we can expect that the value of \( P \) will be a constant. ### Step 6: Evaluate \( P \) Through symmetry and analysis, we can conclude that: \[ P = 1. \] Thus, the final value of \( P \) is: \[ \boxed{1}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -II: RMO) |9 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

If a + b+ c= p and ab + bc + ca= q , find a^(2) +b^(2) + c^(2)

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

Let agt0, bgt0, cgt0 and a+b+c=6 then ((ab+1)^(2))/(b^(2))+((bc+1)^(2))/(c^(2))+((ca+1)^(2))/(a^(2)) may be

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

If a, b, c and d are in G.P. show that (a ^ 2 +b ^ 2 +c^ 2 )(b^ 2 +c^ 2 +d^ 2 )=(ab+bc+cd)^ 2

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity