Home
Class 12
MATHS
A value of alpha such that int(a...

A value of `alpha` such that
`int_(alpha)^(alpha+1) (dx)/((x+a)(x+alpha+1))="loge"((9)/(8))` is

A

2

B

`-1/2`

C

`1/2`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) such that: \[ \int_{\alpha}^{\alpha+1} \frac{dx}{(x+\alpha)(x+\alpha+1)} = \log_e\left(\frac{9}{8}\right) \] ### Step 1: Simplify the integrand We can simplify the integrand using partial fraction decomposition: \[ \frac{1}{(x+\alpha)(x+\alpha+1)} = \frac{A}{x+\alpha} + \frac{B}{x+\alpha+1} \] Multiplying through by the denominator: \[ 1 = A(x+\alpha+1) + B(x+\alpha) \] Expanding and rearranging gives: \[ 1 = (A+B)x + (A\alpha + A + B\alpha) \] Setting coefficients equal, we have: 1. \( A + B = 0 \) 2. \( A\alpha + A + B\alpha = 1 \) From the first equation, we can express \( B \) in terms of \( A \): \[ B = -A \] Substituting into the second equation: \[ A\alpha + A - A\alpha = 1 \implies A = 1 \] Thus, \( B = -1 \). Therefore, we can rewrite the integrand as: \[ \frac{1}{(x+\alpha)(x+\alpha+1)} = \frac{1}{x+\alpha} - \frac{1}{x+\alpha+1} \] ### Step 2: Integrate the simplified expression Now we can integrate: \[ \int_{\alpha}^{\alpha+1} \left(\frac{1}{x+\alpha} - \frac{1}{x+\alpha+1}\right) dx \] This can be split into two separate integrals: \[ \int_{\alpha}^{\alpha+1} \frac{1}{x+\alpha} dx - \int_{\alpha}^{\alpha+1} \frac{1}{x+\alpha+1} dx \] Calculating each integral: 1. For the first integral: \[ \int \frac{1}{x+\alpha} dx = \log_e(x+\alpha) \quad \text{evaluated from } \alpha \text{ to } \alpha+1 \] This gives: \[ \log_e(\alpha+1+\alpha) - \log_e(\alpha) = \log_e\left(\frac{2\alpha+1}{\alpha}\right) \] 2. For the second integral: \[ \int \frac{1}{x+\alpha+1} dx = \log_e(x+\alpha+1) \quad \text{evaluated from } \alpha \text{ to } \alpha+1 \] This gives: \[ \log_e(\alpha+1+\alpha+1) - \log_e(\alpha+1) = \log_e\left(\frac{2\alpha+2}{\alpha+1}\right) \] ### Step 3: Combine the results Combining both results, we have: \[ \log_e\left(\frac{2\alpha+1}{\alpha}\right) - \log_e\left(\frac{2\alpha+2}{\alpha+1}\right) = \log_e\left(\frac{(2\alpha+1)(\alpha+1)}{2\alpha+2}\right) \] Setting this equal to \( \log_e\left(\frac{9}{8}\right) \): \[ \frac{(2\alpha+1)(\alpha+1)}{2\alpha+2} = \frac{9}{8} \] ### Step 4: Cross-multiply and simplify Cross-multiplying gives: \[ 8(2\alpha+1)(\alpha+1) = 9(2\alpha+2) \] Expanding both sides: \[ 16\alpha^2 + 24\alpha + 8 = 18\alpha + 18 \] Rearranging gives: \[ 16\alpha^2 + 6\alpha - 10 = 0 \] ### Step 5: Solve the quadratic equation Dividing through by 2: \[ 8\alpha^2 + 3\alpha - 5 = 0 \] Using the quadratic formula: \[ \alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 8 \cdot (-5)}}{2 \cdot 8} \] Calculating the discriminant: \[ \sqrt{9 + 160} = \sqrt{169} = 13 \] Thus: \[ \alpha = \frac{-3 \pm 13}{16} \] Calculating the two possible values: 1. \( \alpha = \frac{10}{16} = \frac{5}{8} \) 2. \( \alpha = \frac{-16}{16} = -1 \) ### Final Answer The possible values of \( \alpha \) are \( \frac{5}{8} \) and \( -1 \).

To solve the problem, we need to find the value of \( \alpha \) such that: \[ \int_{\alpha}^{\alpha+1} \frac{dx}{(x+\alpha)(x+\alpha+1)} = \log_e\left(\frac{9}{8}\right) \] ### Step 1: Simplify the integrand ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of the inntegral int_(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-x)))dx is

int sqrt(sin(x-alpha)/sin(x+alpha)) dx

The value of alpha for which 4alphaint_(-1)^(2)e^(-alpha|x|)dx=5 is :

The set of values of alpha(alphagt0) for which the inequality int_(-alpha)^(alpha)e^(x)dxgt3/2 holds true is

The value of the integral int_(0)^(3alpha) cosec (x-alpha)cosec(x-2alpha)dx is

The set of values of alpha (alpha gt 0) for which the inequality int_(-alpha)^(alpha) e^x dx gt 3/2 holds true is :

The value of the integral int_(alpha)^(beta) sqrt((x-alpha)(beta-x))dx , is

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

int[sinalphasin(x-alpha)+sin^2(x/2-alpha)]dx

Evaluate: int(sin(x-alpha))/(sin(x+alpha))\ dx