Home
Class 12
MATHS
The range of the function f(x) = sqrt(4...

The range of the function ` f(x) = sqrt(4 - x^2) + sqrt(x^2 - 1)` is

A

[`sqrt(3) , sqrt(7)`]

B

`[sqrt(3) , sqrt(5)]`

C

`[(sqrt(2) , sqrt(3)]`

D

`[(sqrt(3) , sqrt(6))]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{4 - x^2} + \sqrt{x^2 - 1} \), we will follow these steps: ### Step 1: Determine the Domain of the Function The function contains two square root terms, so we need to ensure that the expressions inside the square roots are non-negative. 1. For the first term \( \sqrt{4 - x^2} \): \[ 4 - x^2 \geq 0 \implies x^2 \leq 4 \implies -2 \leq x \leq 2 \] 2. For the second term \( \sqrt{x^2 - 1} \): \[ x^2 - 1 \geq 0 \implies x^2 \geq 1 \implies x \leq -1 \text{ or } x \geq 1 \] Combining these two conditions, we find the domain of \( f(x) \): \[ x \in [-2, -1] \cup [1, 2] \] ### Step 2: Analyze the Function on the Domain Next, we will evaluate the function at the endpoints and critical points within the domain. 1. Evaluate \( f(-2) \): \[ f(-2) = \sqrt{4 - (-2)^2} + \sqrt{(-2)^2 - 1} = \sqrt{4 - 4} + \sqrt{4 - 1} = 0 + \sqrt{3} = \sqrt{3} \] 2. Evaluate \( f(-1) \): \[ f(-1) = \sqrt{4 - (-1)^2} + \sqrt{(-1)^2 - 1} = \sqrt{4 - 1} + \sqrt{1 - 1} = \sqrt{3} + 0 = \sqrt{3} \] 3. Evaluate \( f(1) \): \[ f(1) = \sqrt{4 - 1^2} + \sqrt{1^2 - 1} = \sqrt{4 - 1} + \sqrt{1 - 1} = \sqrt{3} + 0 = \sqrt{3} \] 4. Evaluate \( f(2) \): \[ f(2) = \sqrt{4 - 2^2} + \sqrt{2^2 - 1} = \sqrt{4 - 4} + \sqrt{4 - 1} = 0 + \sqrt{3} = \sqrt{3} \] ### Step 3: Find Maximum Value To find the maximum value of \( f(x) \), we can differentiate \( f(x) \) and set the derivative to zero. 1. Differentiate \( f(x) \): \[ f'(x) = \frac{-x}{\sqrt{4 - x^2}} + \frac{x}{\sqrt{x^2 - 1}} \] Setting \( f'(x) = 0 \): \[ \frac{-x}{\sqrt{4 - x^2}} + \frac{x}{\sqrt{x^2 - 1}} = 0 \] This implies: \[ \frac{x}{\sqrt{x^2 - 1}} = \frac{x}{\sqrt{4 - x^2}} \] Squaring both sides and simplifying leads to: \[ x^2 - 1 = 4 - x^2 \implies 2x^2 = 5 \implies x = \pm \sqrt{\frac{5}{2}} \] ### Step 4: Evaluate at Critical Points Now we need to check if \( \sqrt{\frac{5}{2}} \) lies within the domain: \[ 1 < \sqrt{\frac{5}{2}} < 2 \] Thus, we can evaluate \( f\left(\sqrt{\frac{5}{2}}\right) \): \[ f\left(\sqrt{\frac{5}{2}}\right) = \sqrt{4 - \frac{5}{2}} + \sqrt{\frac{5}{2} - 1} = \sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}} = 2\sqrt{\frac{3}{2}} = \sqrt{6} \] ### Step 5: Conclusion The minimum value of \( f(x) \) is \( \sqrt{3} \) and the maximum value is \( \sqrt{6} \). Therefore, the range of the function is: \[ \text{Range of } f(x) = [\sqrt{3}, \sqrt{6}] \] ### Final Answer The range of the function \( f(x) = \sqrt{4 - x^2} + \sqrt{x^2 - 1} \) is \( [\sqrt{3}, \sqrt{6}] \).

To find the range of the function \( f(x) = \sqrt{4 - x^2} + \sqrt{x^2 - 1} \), we will follow these steps: ### Step 1: Determine the Domain of the Function The function contains two square root terms, so we need to ensure that the expressions inside the square roots are non-negative. 1. For the first term \( \sqrt{4 - x^2} \): \[ 4 - x^2 \geq 0 \implies x^2 \leq 4 \implies -2 \leq x \leq 2 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 25 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

Knowledge Check

  • The domain of the function f(x)=4-sqrt(x^(2)-9) is

    A
    `x lt -3`
    B
    `x gt 0`
    C
    `x gt 3`
    D
    `x le -3` or `x ge3`
  • Which of the following correctly shows the range of the function f(x)= sqrt(-x^(2)+4x+12) ?

    A
    ` 0lt y lt4`
    B
    ` -1 le y le 4`
    C
    `-1 lt y lt 5`
    D
    `0 le y le 4`
  • Similar Questions

    Explore conceptually related problems

    Find the domain of the function f(x) = sqrt( 4 - x) + (1)/( sqrt( x^(2) - 1))

    Find the range of the function f(x)=2sqrt(x-2)+sqrt(4-x)

    Find the range of the function f(x)=2sqrt(x-2)+sqrt(4-x)

    The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

    Range of the function f(x)= log_2(sqrt(x-2)+sqrt(4-x)) is

    The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is