Home
Class 12
MATHS
If (sqrt(2)cos alpha)/sqrt(1-cos2 alpha)...

If `(sqrt(2)cos alpha)/sqrt(1-cos2 alpha)=1/7`and `sqrt((1+cos 2 beta)/2)=1/sqrt10,alpha,beta in (pi/2,pi)`, then `tan (2 alpha - beta)`is equal to ........

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan(2\alpha - \beta) \) given the conditions: 1. \( \frac{\sqrt{2} \cos \alpha}{\sqrt{1 - \cos 2\alpha}} = \frac{1}{7} \) 2. \( \sqrt{\frac{1 + \cos 2\beta}{2}} = \frac{1}{\sqrt{10}} \) 3. \( \alpha, \beta \in \left(\frac{\pi}{2}, \pi\right) \) ### Step 1: Simplifying the first equation Starting with the first equation: \[ \frac{\sqrt{2} \cos \alpha}{\sqrt{1 - \cos 2\alpha}} = \frac{1}{7} \] We know that \( \cos 2\alpha = 2\cos^2 \alpha - 1 \). Thus, we can rewrite \( 1 - \cos 2\alpha \): \[ 1 - \cos 2\alpha = 1 - (2\cos^2 \alpha - 1) = 2(1 - \cos^2 \alpha) = 2\sin^2 \alpha \] Substituting this back into the equation gives: \[ \frac{\sqrt{2} \cos \alpha}{\sqrt{2 \sin^2 \alpha}} = \frac{1}{7} \] This simplifies to: \[ \frac{\sqrt{2} \cos \alpha}{\sqrt{2} \sin \alpha} = \frac{1}{7} \] Thus, \[ \frac{\cos \alpha}{\sin \alpha} = \frac{1}{7} \] This implies: \[ \tan \alpha = 7 \] ### Step 2: Simplifying the second equation Now, consider the second equation: \[ \sqrt{\frac{1 + \cos 2\beta}{2}} = \frac{1}{\sqrt{10}} \] Squaring both sides gives: \[ \frac{1 + \cos 2\beta}{2} = \frac{1}{10} \] Multiplying through by 2: \[ 1 + \cos 2\beta = \frac{2}{10} = \frac{1}{5} \] Thus, \[ \cos 2\beta = \frac{1}{5} - 1 = -\frac{4}{5} \] Using the identity \( \cos 2\beta = 2\cos^2 \beta - 1 \): \[ -\frac{4}{5} = 2\cos^2 \beta - 1 \] Solving for \( \cos^2 \beta \): \[ 2\cos^2 \beta = \frac{1}{5} \implies \cos^2 \beta = \frac{1}{10} \implies \cos \beta = \frac{1}{\sqrt{10}} \] ### Step 3: Finding \( \tan \beta \) Using \( \sin^2 \beta + \cos^2 \beta = 1 \): \[ \sin^2 \beta = 1 - \frac{1}{10} = \frac{9}{10} \implies \sin \beta = \frac{3}{\sqrt{10}} \] Thus, \[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{3}{\sqrt{10}}}{\frac{1}{\sqrt{10}}} = 3 \] ### Step 4: Finding \( \tan 2\alpha \) Using the double angle formula for tangent: \[ \tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha} = \frac{2 \cdot 7}{1 - 49} = \frac{14}{-48} = -\frac{7}{24} \] ### Step 5: Finding \( \tan(2\alpha - \beta) \) Using the formula for \( \tan(a - b) \): \[ \tan(2\alpha - \beta) = \frac{\tan 2\alpha - \tan \beta}{1 + \tan 2\alpha \tan \beta} \] Substituting the values we found: \[ \tan(2\alpha - \beta) = \frac{-\frac{7}{24} - 3}{1 + \left(-\frac{7}{24}\right)(3)} \] Calculating the numerator: \[ -\frac{7}{24} - 3 = -\frac{7}{24} - \frac{72}{24} = -\frac{79}{24} \] Calculating the denominator: \[ 1 - \frac{21}{24} = \frac{24 - 21}{24} = \frac{3}{24} = \frac{1}{8} \] Thus, \[ \tan(2\alpha - \beta) = \frac{-\frac{79}{24}}{\frac{1}{8}} = -\frac{79}{24} \cdot 8 = -\frac{79}{3} \] ### Final Answer The value of \( \tan(2\alpha - \beta) \) is: \[ \boxed{-\frac{79}{3}} \]

To solve the problem, we need to find the value of \( \tan(2\alpha - \beta) \) given the conditions: 1. \( \frac{\sqrt{2} \cos \alpha}{\sqrt{1 - \cos 2\alpha}} = \frac{1}{7} \) 2. \( \sqrt{\frac{1 + \cos 2\beta}{2}} = \frac{1}{\sqrt{10}} \) 3. \( \alpha, \beta \in \left(\frac{\pi}{2}, \pi\right) \) ### Step 1: Simplifying the first equation ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

If sqrt2(sin alpha)/(sqrt(1+cos2 alpha))=1/7 and sqrt((1-cos2beta)/2)=1/(sqrt(10)) alpha, beta in (0, pi/2) then tan (alpha + 2 beta) is equal to _________

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to

If cos( alpha+beta) + sin(alpha-beta) = 0 and 2010tan beta - 1 = 0 then tan alpha is equal to

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to