Home
Class 12
MATHS
Let alphaa n dbeta be nonzero real numbe...

Let `alphaa n dbeta` be nonzero real numbers such that `2(cosbeta-cosalpha)+cosalphacosbeta=1` . Then which of the following is/are true? `sqrt(3)tan(alpha/2)+tan(beta/2)=0` `sqrt(3)tan(alpha/2)-tan(beta/2)=0` `t a n""(alpha/2)+sqrt(3)tan(beta/2)=0` `t a n""(alpha/2)-sqrt(3)tan(beta/2)=0`

A

`sqrt3tan((alpha)/(2))-tan((beta)/(2)) = 0`

B

`tan((alpha)/(2)) - sqrt3tan((beta)/(2)) = 0`

C

`tan((alpha)/(2))+sqrt3tan((beta)/(2)) = 0`

D

`sqrt3tan((alpha)/(2))+tan((beta)/(2)) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and derive the necessary relationships between the angles \(\alpha\) and \(\beta\). Let's go through the steps systematically. ### Step 1: Start with the given equation We have the equation: \[ 2(\cos \beta - \cos \alpha) + \cos \alpha \cos \beta = 1 \] ### Step 2: Rewrite cosines in terms of tangents Using the half-angle formulas, we can express \(\cos \alpha\) and \(\cos \beta\) in terms of \(\tan(\alpha/2)\) and \(\tan(\beta/2)\): \[ \cos \alpha = \frac{1 - \tan^2(\alpha/2)}{1 + \tan^2(\alpha/2)} \quad \text{and} \quad \cos \beta = \frac{1 - \tan^2(\beta/2)}{1 + \tan^2(\beta/2)} \] Let \(a = \tan^2(\alpha/2)\) and \(b = \tan^2(\beta/2)\). ### Step 3: Substitute into the equation Substituting these into the original equation gives: \[ 2\left(\frac{1 - b}{1 + b} - \frac{1 - a}{1 + a}\right) + \left(\frac{1 - a}{1 + a}\right)\left(\frac{1 - b}{1 + b}\right) = 1 \] ### Step 4: Simplify the equation This can be simplified by finding a common denominator: \[ \text{Let } LCM = (1 + a)(1 + b) \] Then, we rewrite the equation: \[ 2\left(\frac{(1 - b)(1 + a) - (1 - a)(1 + b)}{(1 + b)(1 + a)}\right) + \frac{(1 - a)(1 - b)}{(1 + a)(1 + b)} = 1 \] ### Step 5: Expand and simplify After expanding and simplifying the equation, we will have: \[ 4a - 4b = 2a + 2b \] This leads us to: \[ 4a - 2a = 4b + 2b \implies 2a = 6b \implies a = 3b \] ### Step 6: Substitute back to find relationships Substituting back \(a\) and \(b\): \[ \tan^2\left(\frac{\alpha}{2}\right) = 3\tan^2\left(\frac{\beta}{2}\right) \] ### Step 7: Find the relationships Taking square roots gives: \[ \tan\left(\frac{\alpha}{2}\right) = \sqrt{3}\tan\left(\frac{\beta}{2}\right) \quad \text{or} \quad \tan\left(\frac{\alpha}{2}\right) = -\sqrt{3}\tan\left(\frac{\beta}{2}\right) \] ### Step 8: Write the final equations This leads us to the following equations: 1. \(\sqrt{3}\tan\left(\frac{\alpha}{2}\right) - \tan\left(\frac{\beta}{2}\right) = 0\) 2. \(\tan\left(\frac{\alpha}{2}\right) - \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0\) ### Conclusion Thus, the correct options are: - \(\sqrt{3}\tan\left(\frac{\alpha}{2}\right) - \tan\left(\frac{\beta}{2}\right) = 0\) (True) - \(\tan\left(\frac{\alpha}{2}\right) - \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0\) (True)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of tan (theta/2)=(tan (alpha/2)-tan (beta/2))/(1-tan (alpha/2) tan (beta/2)).

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is (a) -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) (c) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of (tan) theta/2=(tan alpha/2-tan beta/2)/(1-t a n alpha/2 tan beta/2).

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If cos theta=cos alpha cos beta then tan((theta+alpha)/2) tan((theta-alpha)/2)= (i) tan^2(alpha/2) (ii) tan^2(beta/2) (iii) tan^2(theta/2) (iv) cot^2(beta/2)

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

Show taht 2tan^-1(tan(alpha/2)tan(pi/4-beta/2))=tan^-1((sinalphacosbeta)/(cosalpha+sinbeta))

Show taht 2tan^-1(tan(alpha/2)tan(pi/4-beta/2))=tan^-1((sinalphacosbeta)/(cosalpha+sinbeta))

Show taht 2tan^-1(tan(alpha/2)tan(pi/4-beta/2))=tan^-1((sinalphacosbeta)/(cosalpha+sinbeta))

alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2beta) then tan alpha cot beta =

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -JEE Main (Archive)
  1. Let alphaa n dbeta be nonzero real numbers such that 2(cosbeta-cosalph...

    Text Solution

    |

  2. Let f: (-1, 1) to R be such that f(cos 4theta) = (2)/(2-sec^(2)theta) ...

    Text Solution

    |

  3. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  4. Let varphi,phi in [0,2pi] be such that 2costheta(1-sinphi)=sin^2theta(...

    Text Solution

    |

  5. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  6. The number of distinct solution of the equation 5/4 cos^(2) 2x + cos^(...

    Text Solution

    |

  7. The positive integer value of n >3 satisfying the equation 1/(sin(pi/n...

    Text Solution

    |

  8. The number of values of theta in the interval (-pi/2, pi/2) such that ...

    Text Solution

    |

  9. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  10. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  11. If (sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5, then

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. The number of ordered pairs (alpha, beta) ,where alpha, beta in (-pi, ...

    Text Solution

    |

  14. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  15. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  16. The expression (tan A)/(1-cotA)+(cot A)/(1-tan A) can be written as

    Text Solution

    |

  17. In a Delta PQR , if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1, th...

    Text Solution

    |

  18. If A=sin^(2)x+cos^(4)x, then for all real x

    Text Solution

    |

  19. Let cos(alpha + beta) = 4//5 and let sin ( alpha - beta)= 5//13, wher...

    Text Solution

    |

  20. Let A and B denote the statements A : cos alpha + cos beta + cos gam...

    Text Solution

    |