Home
Class 12
MATHS
Let alphaa n dbeta be nonzero real numbe...

Let `alphaa n dbeta` be nonzero real numbers such that `2(cosbeta-cosalpha)+cosalphacosbeta=1` . Then which of the following is/are true? `sqrt(3)tan(alpha/2)+tan(beta/2)=0` `sqrt(3)tan(alpha/2)-tan(beta/2)=0` `t a n""(alpha/2)+sqrt(3)tan(beta/2)=0` `t a n""(alpha/2)-sqrt(3)tan(beta/2)=0`

A

`sqrt3tan((alpha)/(2))-tan((beta)/(2)) = 0`

B

`tan((alpha)/(2)) - sqrt3tan((beta)/(2)) = 0`

C

`tan((alpha)/(2))+sqrt3tan((beta)/(2)) = 0`

D

`sqrt3tan((alpha)/(2))+tan((beta)/(2)) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and derive the necessary relationships between the angles \(\alpha\) and \(\beta\). Let's go through the steps systematically. ### Step 1: Start with the given equation We have the equation: \[ 2(\cos \beta - \cos \alpha) + \cos \alpha \cos \beta = 1 \] ### Step 2: Rewrite cosines in terms of tangents Using the half-angle formulas, we can express \(\cos \alpha\) and \(\cos \beta\) in terms of \(\tan(\alpha/2)\) and \(\tan(\beta/2)\): \[ \cos \alpha = \frac{1 - \tan^2(\alpha/2)}{1 + \tan^2(\alpha/2)} \quad \text{and} \quad \cos \beta = \frac{1 - \tan^2(\beta/2)}{1 + \tan^2(\beta/2)} \] Let \(a = \tan^2(\alpha/2)\) and \(b = \tan^2(\beta/2)\). ### Step 3: Substitute into the equation Substituting these into the original equation gives: \[ 2\left(\frac{1 - b}{1 + b} - \frac{1 - a}{1 + a}\right) + \left(\frac{1 - a}{1 + a}\right)\left(\frac{1 - b}{1 + b}\right) = 1 \] ### Step 4: Simplify the equation This can be simplified by finding a common denominator: \[ \text{Let } LCM = (1 + a)(1 + b) \] Then, we rewrite the equation: \[ 2\left(\frac{(1 - b)(1 + a) - (1 - a)(1 + b)}{(1 + b)(1 + a)}\right) + \frac{(1 - a)(1 - b)}{(1 + a)(1 + b)} = 1 \] ### Step 5: Expand and simplify After expanding and simplifying the equation, we will have: \[ 4a - 4b = 2a + 2b \] This leads us to: \[ 4a - 2a = 4b + 2b \implies 2a = 6b \implies a = 3b \] ### Step 6: Substitute back to find relationships Substituting back \(a\) and \(b\): \[ \tan^2\left(\frac{\alpha}{2}\right) = 3\tan^2\left(\frac{\beta}{2}\right) \] ### Step 7: Find the relationships Taking square roots gives: \[ \tan\left(\frac{\alpha}{2}\right) = \sqrt{3}\tan\left(\frac{\beta}{2}\right) \quad \text{or} \quad \tan\left(\frac{\alpha}{2}\right) = -\sqrt{3}\tan\left(\frac{\beta}{2}\right) \] ### Step 8: Write the final equations This leads us to the following equations: 1. \(\sqrt{3}\tan\left(\frac{\alpha}{2}\right) - \tan\left(\frac{\beta}{2}\right) = 0\) 2. \(\tan\left(\frac{\alpha}{2}\right) - \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0\) ### Conclusion Thus, the correct options are: - \(\sqrt{3}\tan\left(\frac{\alpha}{2}\right) - \tan\left(\frac{\beta}{2}\right) = 0\) (True) - \(\tan\left(\frac{\alpha}{2}\right) - \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0\) (True)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of tan (theta/2)=(tan (alpha/2)-tan (beta/2))/(1-tan (alpha/2) tan (beta/2)).

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is (a) -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) (c) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of (tan) theta/2=(tan alpha/2-tan beta/2)/(1-t a n alpha/2 tan beta/2).

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If cos theta=cos alpha cos beta then tan((theta+alpha)/2) tan((theta-alpha)/2)= (i) tan^2(alpha/2) (ii) tan^2(beta/2) (iii) tan^2(theta/2) (iv) cot^2(beta/2)

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

Show taht 2tan^-1(tan(alpha/2)tan(pi/4-beta/2))=tan^-1((sinalphacosbeta)/(cosalpha+sinbeta))

Show taht 2tan^-1(tan(alpha/2)tan(pi/4-beta/2))=tan^-1((sinalphacosbeta)/(cosalpha+sinbeta))

Show taht 2tan^-1(tan(alpha/2)tan(pi/4-beta/2))=tan^-1((sinalphacosbeta)/(cosalpha+sinbeta))

alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2beta) then tan alpha cot beta =