Home
Class 12
MATHS
If i=sqrt(-1), then (i^(n)+i^(-n), n in ...

If `i=sqrt(-1)`, then `(i^(n)+i^(-n), n in Z)` is equal to

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( i^n + i^{-n} \) for \( n \in \mathbb{Z} \), where \( i = \sqrt{-1} \). We will consider different cases based on the value of \( n \) modulo 4. ### Step-by-Step Solution: 1. **Understanding Powers of \( i \)**: The powers of \( i \) cycle every four terms: - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) (and so on) 2. **Case 1: \( n = 4m \)** (where \( m \) is an integer) - Here, \( i^n = i^{4m} = (i^4)^m = 1^m = 1 \) - Similarly, \( i^{-n} = i^{-4m} = (i^{-4})^m = 1^m = 1 \) - Therefore, \( i^n + i^{-n} = 1 + 1 = 2 \) 3. **Case 2: \( n = 4m + 1 \)** - Here, \( i^n = i^{4m+1} = i^{4m} \cdot i^1 = 1 \cdot i = i \) - And \( i^{-n} = i^{-(4m+1)} = i^{-4m} \cdot i^{-1} = 1 \cdot (-i) = -i \) - Therefore, \( i^n + i^{-n} = i - i = 0 \) 4. **Case 3: \( n = 4m + 2 \)** - Here, \( i^n = i^{4m+2} = i^{4m} \cdot i^2 = 1 \cdot (-1) = -1 \) - And \( i^{-n} = i^{-(4m+2)} = i^{-4m} \cdot i^{-2} = 1 \cdot (-1) = -1 \) - Therefore, \( i^n + i^{-n} = -1 + (-1) = -2 \) 5. **Case 4: \( n = 4m + 3 \)** - Here, \( i^n = i^{4m+3} = i^{4m} \cdot i^3 = 1 \cdot (-i) = -i \) - And \( i^{-n} = i^{-(4m+3)} = i^{-4m} \cdot i^{-3} = 1 \cdot i = i \) - Therefore, \( i^n + i^{-n} = -i + i = 0 \) ### Summary of Results: - If \( n \equiv 0 \mod 4 \), then \( i^n + i^{-n} = 2 \) - If \( n \equiv 1 \mod 4 \), then \( i^n + i^{-n} = 0 \) - If \( n \equiv 2 \mod 4 \), then \( i^n + i^{-n} = -2 \) - If \( n \equiv 3 \mod 4 \), then \( i^n + i^{-n} = 0 \) ### Final Answer: The expression \( i^n + i^{-n} \) can take the values \( 2, 0, -2 \) depending on the value of \( n \mod 4 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

i ^n+i ^(n+1)+i ^(n+2)+i ^(n+3) (n∈N) is equal to

If n is an odd integer, then (1 + i)^(6n) + (1-i)^(6n) is equal to

The complex number 2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I is equal to

If (a_(1)+ib_(1))(a_(2)+ib_(2))………………(a_(n)+ib_(n))=A+iB , then sum_(i=1)^(n) tan^(-1)(b_(i)/a_(i)) is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to