Home
Class 12
MATHS
Re [((cos2^(@)+isin2^(@))^(100)(cos5^(@)...

Re `[((cos2^(@)+isin2^(@))^(100)(cos5^(@)+isin5^(@))^(200))/((cos10^(@)+isin10^(@))^(126))]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given complex number expression and find its real part, we can follow these steps: **Step 1: Rewrite the expression using Euler's formula.** The expression given is: \[ \frac{(cos(2^\circ) + i \sin(2^\circ))^{100} (cos(5^\circ) + i \sin(5^\circ)^{200}}{(cos(10^\circ) + i \sin(10^\circ))^{126}} \] Using Euler's formula \(e^{i\theta} = \cos(\theta) + i\sin(\theta)\), we can rewrite the terms: - \(z_1 = (cos(2^\circ) + i \sin(2^\circ))^{100} = (e^{i \cdot 2^\circ})^{100} = e^{i \cdot 200^\circ}\) - \(z_2 = (cos(5^\circ) + i \sin(5^\circ))^{200} = (e^{i \cdot 5^\circ})^{200} = e^{i \cdot 1000^\circ}\) - \(z_3 = (cos(10^\circ) + i \sin(10^\circ))^{126} = (e^{i \cdot 10^\circ})^{126} = e^{i \cdot 1260^\circ}\) **Step 2: Combine the terms.** Now we can combine these terms: \[ z = \frac{z_1 \cdot z_2}{z_3} = \frac{e^{i \cdot 200^\circ} \cdot e^{i \cdot 1000^\circ}}{e^{i \cdot 1260^\circ}} = \frac{e^{i \cdot (200 + 1000)^\circ}}{e^{i \cdot 1260^\circ}} = \frac{e^{i \cdot 1200^\circ}}{e^{i \cdot 1260^\circ}} \] This simplifies to: \[ z = e^{i \cdot (1200^\circ - 1260^\circ)} = e^{-i \cdot 60^\circ} \] **Step 3: Find the real part.** Now we need to find the real part of \(e^{-i \cdot 60^\circ}\): \[ e^{-i \cdot 60^\circ} = \cos(-60^\circ) + i \sin(-60^\circ) \] Using the property of cosine and sine: \[ \cos(-\theta) = \cos(\theta) \quad \text{and} \quad \sin(-\theta) = -\sin(\theta) \] Thus: \[ e^{-i \cdot 60^\circ} = \cos(60^\circ) - i \sin(60^\circ) \] The real part is: \[ \cos(60^\circ) = \frac{1}{2} \] **Final Answer:** The real part of the given complex number is \(\frac{1}{2}\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

sin10 5^(@)+cos10 5^(@)=

The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(@))) is :

Convert it into a+ib form: (7(cos135^(@)+isin135^(@)))/(14(cos90^(@)+isin90^(@))) .

Values of (1-isqrt(3))^(1/3) is (are) (A) 2^(1/3)(cos20^0+isin20^0) (B) 2^(1/3)(cos20^0-isin20^0) (C) 2^(1/3)(cos100^0+isin100^0) (D) 2^(1/3)(cos220^0+isin220^0)

i) Prove that: cos^(3)2A+3cos2A = 4(cos^(6)A-sin^(6)A) ii) Prove that: 4(cos^(3)10^(@) + sin^(3)20^(@)) = 3(cos10^(@)+sin20^(@))

Express the following in a + ib form: (i) ((cos theta+ isin theta)/(sin theta + icos theta))^(4) (ii) ((cos 2theta -isin2theta)^(4)(cos4theta +isin4theta)^(-5))/((cos 3theta +isin3theta)^(-2) (cos 3theta -isin 3theta)^(-9)) (iii) ((sinpi//8 +icos pi//8)^(8))/((sinpi//8-icospi//8)^(8))

Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + isin 45^(@)))=A + Bi , find the values of A and B.

The value of [sqrt(2)(cos(56^(@)15^('))+isin(56^(@)15^('))]^(8) , is

The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

Prove that (cos100sin10^0)/(cos10^0-s in 10^0)=tan55^0