Home
Class 12
MATHS
If x satisfies the cubic equation ax^(3...

If x satisfies the cubic equation `ax^(3)+bx^(2)+cx+d=0` such that `cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi`, then find the value of `(b+c)-(a+d)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and find the values of \( a, b, c, \) and \( d \) from the cubic equation \( ax^3 + bx^2 + cx + d = 0 \) based on the condition \( \cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi \). ### Step-by-Step Solution 1. **Start with the given equation:** \[ \cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi \] 2. **Rearrange the equation:** \[ \cos^{-1}(2x) + \cos^{-1}(3x) = \pi - \cos^{-1}(x) \] 3. **Use the property of cosine inverse:** From the identity \( \cos^{-1}(a) + \cos^{-1}(b) = \cos^{-1}(ab - \sqrt{(1-a^2)(1-b^2)}) \), we can set: \[ \cos^{-1}(2x) + \cos^{-1}(3x) = \cos^{-1}(2x \cdot 3x - \sqrt{(1 - (2x)^2)(1 - (3x)^2)}) \] 4. **Substituting values:** \[ \cos^{-1}(2x) + \cos^{-1}(3x) = \cos^{-1}(6x^2 - \sqrt{(1 - 4x^2)(1 - 9x^2)}) \] 5. **Equating the two expressions:** \[ \pi - \cos^{-1}(x) = \cos^{-1}(6x^2 - \sqrt{(1 - 4x^2)(1 - 9x^2)}) \] 6. **Taking cosine of both sides:** \[ x = 6x^2 - \sqrt{(1 - 4x^2)(1 - 9x^2)} \] 7. **Rearranging the equation:** \[ 6x^2 - x - \sqrt{(1 - 4x^2)(1 - 9x^2)} = 0 \] 8. **Square both sides to eliminate the square root:** \[ (6x^2 - x)^2 = (1 - 4x^2)(1 - 9x^2) \] 9. **Expanding both sides:** - Left side: \[ (6x^2 - x)^2 = 36x^4 - 12x^3 + x^2 \] - Right side: \[ (1 - 4x^2)(1 - 9x^2) = 1 - 13x^2 + 36x^4 \] 10. **Setting both sides equal:** \[ 36x^4 - 12x^3 + x^2 = 1 - 13x^2 + 36x^4 \] 11. **Cancelling \( 36x^4 \) from both sides:** \[ -12x^3 + x^2 + 13x^2 - 1 = 0 \] \[ -12x^3 + 14x^2 - 1 = 0 \] 12. **Rearranging gives:** \[ 12x^3 - 14x^2 + 1 = 0 \] 13. **Identifying coefficients:** From the equation \( 12x^3 - 14x^2 + 0x + 1 = 0 \), we have: - \( a = 12 \) - \( b = -14 \) - \( c = 0 \) - \( d = 1 \) 14. **Calculating \( (b + c) - (a + d) \):** \[ (b + c) - (a + d) = (-14 + 0) - (12 + 1) = -14 - 13 = -27 \] ### Final Answer The value of \( (b + c) - (a + d) \) is \( -27 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

If cos^(-1).(6x)/(1 + 9x^(2)) = -(pi)/(2) + 2 tan^(-1) 3x , then find the values of x

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

Resolve into Partial Fractions If (1)/(x^(3)(x+3))=(1)/(Ax) - (1)/(Bx^(2))+(1)/(Cx^(3))-(1)/(D(x+3)) then find the values of A, B, C and D.

For the equation cos^(-1)x+cos^(-1)2x+pi=0 , the number of real solution is (A)1 (B) 2 (C) 0 (D) oo

If 1,2,3 and 4 are the roots of the equation x^4 + ax^3 + bx^2 +cx +d=0 then a+ 2b +c=

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is : (a) "cos"(pi)/(5) (b) "cos"(pi)/(4) (c) "cos"(pi)/(8) (d) "cos"(pi)/(12)