Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot` `-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K` `1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K` `-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K` `1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`

A

` ( -1)/ ((secx + tan x )^(11//2) { (1)/(11) - (1)/(7) (sec x + tan x ) ^2 } + K `

B

`(1)/((sec x + tan x ) ^(11//2)) { (1)/(11) - (1)/(7) (sec x + tan x ) ^2 } + K `

C

` ( - 1 )/((sec x + tan x ) ^(11//2)) { (1)/(11) + (1)/(7) (sec x + tan x ) ^2 } + K `

D

` (1)/((secx + tan x ) ^(11//2)) { (1)/(11) + (1)/(7) (secx + tan x ) ^2 } + K`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|26 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Find the integral intsecx(secx+tanx)dx

Evaluate: int(secx)/(log(secx+tanx)dx

int((2+secx)secx)/((1+2secx)^2)dx=

Evaluate int(tanx)/(secx+tanx)dx

int secx / (secx+tanx)dx =

Prove that 1/(secx-tanx)+1/(secx+tanx)=2/(cosx)

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

Evaluate : int_0^pi(xtanx)/(secx+tanx)dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dx