Home
Class 12
MATHS
A single formula that gives f(x) for all...

A single formula that gives `f(x)` for all `x ge0` where `f(x)={(3+x, 0lexlt3),(3x-3, xge3):}` is

A

`f(x)=|2x-1|+4x`

B

`f(x)=|x-3|+2x`

C

`f(x)=|3x-9|-x`

D

`f(x)=|x-3|+3x`

Text Solution

AI Generated Solution

The correct Answer is:
To find a single formula that gives \( f(x) \) for all \( x \geq 0 \), we start with the piecewise function defined as: \[ f(x) = \begin{cases} 3 + x & \text{if } 0 \leq x < 3 \\ 3x - 3 & \text{if } x \geq 3 \end{cases} \] ### Step 1: Analyze the piecewise function We have two cases to consider based on the value of \( x \): 1. For \( 0 \leq x < 3 \), \( f(x) = 3 + x \) 2. For \( x \geq 3 \), \( f(x) = 3x - 3 \) ### Step 2: Identify the critical point The critical point where the definition of the function changes is at \( x = 3 \). We need to ensure that our single formula correctly represents both cases at this point. ### Step 3: Check the function values at the critical point - For \( x = 3 \): - From the first case: \( f(3) = 3 + 3 = 6 \) - From the second case: \( f(3) = 3(3) - 3 = 9 - 3 = 6 \) Both cases yield the same value at \( x = 3 \), which is \( 6 \). ### Step 4: Construct the single formula using absolute value To combine both cases into a single formula, we can use the absolute value function. The absolute value function can help us express the piecewise nature of \( f(x) \). The function can be rewritten as: \[ f(x) = |x - 3| + 3x \] ### Step 5: Verify the combined formula Now we will check if this formula matches the original piecewise function for both cases. - **Case 1**: When \( 0 \leq x < 3 \): - \( |x - 3| = 3 - x \) - Thus, \( f(x) = (3 - x) + 3x = 3 + 2x \) - This does not match the original function \( 3 + x \). - **Case 2**: When \( x \geq 3 \): - \( |x - 3| = x - 3 \) - Thus, \( f(x) = (x - 3) + 3x = 4x - 3 \) - This does not match the original function \( 3x - 3 \). ### Step 6: Find the correct representation After analyzing the options given, we can check option B: \[ f(x) = |x - 3| + 2x \] - **For \( 0 \leq x < 3 \)**: - \( |x - 3| = 3 - x \) - Thus, \( f(x) = (3 - x) + 2x = 3 + x \) - **For \( x \geq 3 \)**: - \( |x - 3| = x - 3 \) - Thus, \( f(x) = (x - 3) + 2x = 3x - 3 \) Both cases match the original piecewise function. ### Final Answer: The single formula that gives \( f(x) \) for all \( x \geq 0 \) is: \[ f(x) = |x - 3| + 2x \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

solve for ,x where f(x)=|x|ge0

Find the values of 'a' for which, f(x)={(4x-x^(3)+log(a^(2)-3a+3)",",0lexlt3),(" "x-18",",xge3):} , f(x) as a local minima at x=3 is

Knowledge Check

  • If f(x) ge0 for all x, then f(2-x) is

    A
    `ge-2`
    B
    `ge0`
    C
    `ge2`
    D
    `le0`
  • Similar Questions

    Explore conceptually related problems

    Examine the differentiability of f , where f is defined by f(x) = {{:(x[x],if0lexlt2),((x-1)x,if2lexlt3):} at x = 2

    If h(x)= f(f(x)) for all x in R, and f(x)= x^3 + 3x+2 , then h(0) equals

    Let f be a function such that f(x+y)=f(x)+f(y) for all xa n dya n df(x)=(2x^2+3x)g(x) for all x , where g(x) is continuous and g(0)=3. Then find f^(prime)(x)dot

    Let f be a function such that f(x+y)=f(x)+f(y) for all xa n dya n df(x)=(2x^2+3x)g(x) for all x , where g(x) is continuous and g(0)=3. Then find f^(prime)(x)dot

    f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

    f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

    Evaluate : int_(0)^(3) f(x) dx , where f(x)={(cos2x",",0 le x le (pi)/(2)),(3",",(pi)/(2) le x le 3):}