Home
Class 12
MATHS
A variable line L drawn through O(0,0) t...

A variable line L drawn through O(0,0) to meet line l1: y-x-10=0 and L2:y-x-20=0 at the point A and B respectively then locus of point p is ' such that `(OP)^(2) = OA . OB, `

A

`3x+3y=40`

B

`3x+3y+40=0`

C

`3x-3y=40`

D

`3y-3x=40`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Main Archive|32 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Level -2|43 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos

Similar Questions

Explore conceptually related problems

A variable line L is drawn through O (0,0) to meet the lines L 1 ​ :y−x−10=0 and L 2 ​ :y−x−20=0 at the points A and B respectively. A point P is taken on L such that OP 2 ​ = OA 1 ​ + OB 1 ​ and P,A,B lies on same side of origin O. The locus of P is

A variable line L is drawn through O(0,0) to meet the line L_(1) " and " L_(2) given by y-x-10 =0 and y-x-20=0 at Points A and B, respectively. Locus of P, if OP^(2) = OA xx OB , is a. (y+x)^(2) = 50 b. (y-x)^(2) = 200 c. (y-x)^(2) = 100 d. none of these

A straight line through origin O meets the lines 3y=10-4x and 8x+6y+5=0 at point A and B respectively. Then , O divides the Segment AB in the ratio.

A variable line L passing through the point B(2, 5) intersects the lines 2x^2 - 5xy+2y^2 = 0 at P and Q. Find the locus of the point R on L such that distances BP, BR and BQ are in harmonic progression.

If the line y=mx meets the lines x+2y-1=0 and 2x-y+3=0 at the same point, then m is equal to

A line is a drawn from P(4,3) to meet the lines L_1 and l_2 given by 3x+4y+5=0 and 3x+4y+15=0 at points A and B respectively. From A , a line perpendicular to L is drawn meeting the line L_2 at A_1 Similarly, from point B_1 Thus a parallelogram AA_1 B B_1 is formed. Then the equation of L so that the area of the parallelogram AA_1 B B_1 is the least is (a) x-7y+17=0 (b) 7x+y+31=0 (c) x-7y-17=0 (d) x+7y-31=0

Let L_1=0a n dL_2=0 be two fixed lines. A variable line is drawn through the origin to cut the two lines at R and SdotPdot is a point on the line A B such that ((m+n))/(O P)=m/(O R)+n/(O S)dot Show that the locus of P is a straight line passing through the point of intersection of the given lines R , S , R are on the same side of O)dot

The line L_1-=4x+3y-12=0 intersects the x-and y-axies at A and B , respectively. A variable line perpendicular to L_1 intersects the x- and the y-axis at P and Q , respectively. Then the locus of the circumcenter of triangle A B Q is (a) 3x-4y+2=0 (b) 4x+3y+7=0 (c) 6x-8y+7=0 (d) none of these

The line L_1-=4x+3y-12=0 intersects the x-and y-axies at Aa n dB , respectively. A variable line perpendicular to L_1 intersects the x- and the y-axis at P and Q , respectively. Then the locus of the circumcenter of triangle A B Q is (a) 3x-4y+2=0 (b) 4x+3y+7=0 (c) 6x-8y+7=0 (d) none of these

A straight line L through the origin meets the lines x + y = 1 and x + y = 3 at P and Q respectively. Through P and Q two straight lines L_1 , and L_2 are drawn, parallel to 2x-y- 5 and 3x +y 5 respectively. Lines L_1 and L_2 intersect at R. Locus of R, as L varies, is