Home
Class 12
MATHS
If the lines x - 2y - 6 = 0 , 3x + y - 4...

If the lines `x - 2y - 6 = 0 , 3x + y - 4=0 ` and `lambda x +4y + lambda^(2) = 0 ` are concurrent , then value of `lambda` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\lambda\) for which the lines \(x - 2y - 6 = 0\), \(3x + y - 4 = 0\), and \(\lambda x + 4y + \lambda^2 = 0\) are concurrent, we can use the condition that the determinant of the coefficients of these lines must be zero. ### Step-by-step Solution: 1. **Identify the coefficients of the lines**: - For the line \(x - 2y - 6 = 0\): - \(a_1 = 1\), \(b_1 = -2\), \(c_1 = -6\) - For the line \(3x + y - 4 = 0\): - \(a_2 = 3\), \(b_2 = 1\), \(c_2 = -4\) - For the line \(\lambda x + 4y + \lambda^2 = 0\): - \(a_3 = \lambda\), \(b_3 = 4\), \(c_3 = \lambda^2\) 2. **Set up the determinant**: The lines are concurrent if the determinant of the coefficients is zero: \[ \begin{vmatrix} 1 & -2 & -6 \\ 3 & 1 & -4 \\ \lambda & 4 & \lambda^2 \end{vmatrix} = 0 \] 3. **Calculate the determinant**: Expanding the determinant using the first row: \[ = 1 \cdot \begin{vmatrix} 1 & -4 \\ 4 & \lambda^2 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 3 & -4 \\ \lambda & \lambda^2 \end{vmatrix} - 6 \cdot \begin{vmatrix} 3 & 1 \\ \lambda & 4 \end{vmatrix} \] Now calculating each of these 2x2 determinants: - First determinant: \[ = 1 \cdot (1 \cdot \lambda^2 - (-4) \cdot 4) = \lambda^2 + 16 \] - Second determinant: \[ = 2 \cdot (3 \cdot \lambda^2 - (-4) \cdot \lambda) = 2(3\lambda^2 + 4\lambda) = 6\lambda^2 + 8\lambda \] - Third determinant: \[ = -6 \cdot (3 \cdot 4 - 1 \cdot \lambda) = -6(12 - \lambda) = -72 + 6\lambda \] 4. **Combine the results**: Now we combine all these results: \[ \lambda^2 + 16 + 6\lambda^2 + 8\lambda - 72 + 6\lambda = 0 \] Simplifying this gives: \[ 7\lambda^2 + 14\lambda - 56 = 0 \] 5. **Divide by 7**: \[ \lambda^2 + 2\lambda - 8 = 0 \] 6. **Factor the quadratic**: Factoring gives: \[ (\lambda + 4)(\lambda - 2) = 0 \] 7. **Find the values of \(\lambda\)**: Setting each factor to zero gives: \[ \lambda + 4 = 0 \quad \Rightarrow \quad \lambda = -4 \] \[ \lambda - 2 = 0 \quad \Rightarrow \quad \lambda = 2 \] ### Final Answer: The values of \(\lambda\) for which the lines are concurrent are \(\lambda = 2\) and \(\lambda = -4\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Main Archive|32 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Main Archive (State true or false: Q. 16 to 18)|3 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Level -2 Passage|5 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos

Similar Questions

Explore conceptually related problems

If the lines 3x^(2)-4xy +y^(2) +8x - 2y- 3 = 0 and 2x - 3y +lambda = 0 are concurrent, then the value of lambda is

Show that the lines 2x + 3y - 8 = 0 , x - 5y + 9 = 0 and 3x + 4y - 11 = 0 are concurrent.

If the lines x^2+2x y-35 y^2-4x+44 y-12=0a n d5x+lambday-8 are concurrent, then the value of lambda is

If the lines x^2+2x y-35 y^2-4x+44 y-12=0&5x+lambday-8=0 are concurrent, then the value of lambda is (a) 0 (b) 1 (c) -1 (d) 2

If the equation 3x^2 + 3y^2 + 6lambdax + 2lambda = 0 represents a circle, then the value of lambda . lies in

Find the value of lambda , if the line 3x-4y-13=0,8x-11 y-33=0 and 2x-3y+lambda=0 are concurrent.

Find the value of lambda , if the line 3x-4y-13=0,8x-11 y-33=0a n d2x-3y+lambda=0 are concurrent.

Find the value of lambda , if the line 3x-4y-13=0,8x-11 y-33=0a n d2x-3y+lambda=0 are concurrent.

If a circle passes through the points of intersection of the lines 2x-y +1=0 and x+lambda y -3=0 with the axes of reference then the value of lambda is :

If the equation 4x^2-x-1=0 and 3x^2+(lambda+mu)x+lambda-mu=0 have a root common, then the irrational values of lambda and mu are (a) lambda=(-3)/4 b. lambda=0 c. mu=3/4 b. mu=0