Home
Class 12
MATHS
Evaluate the following integrals: int ...

Evaluate the following integrals:
`int frac{sin^6x+cos^6x}{sin^2x cos^2x}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx, \] we will follow these steps: ### Step 1: Simplify \(\sin^6 x + \cos^6 x\) We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2). \] Let \(a = \sin^2 x\) and \(b = \cos^2 x\). Then, \[ \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3 = (\sin^2 x + \cos^2 x)((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2). \] Since \(\sin^2 x + \cos^2 x = 1\), we have: \[ \sin^6 x + \cos^6 x = 1 \cdot \left((\sin^2 x)^2 + (\cos^2 x)^2 - \sin^2 x \cos^2 x\right). \] Now, we can express \((\sin^2 x)^2 + (\cos^2 x)^2\) as: \[ (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x. \] Thus, \[ \sin^6 x + \cos^6 x = (1 - 2\sin^2 x \cos^2 x) - \sin^2 x \cos^2 x = 1 - 3\sin^2 x \cos^2 x. \] ### Step 2: Substitute back into the integral Now substituting back into the integral, we get: \[ I = \int \frac{1 - 3\sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx. \] This can be split into two separate integrals: \[ I = \int \frac{1}{\sin^2 x \cos^2 x} \, dx - 3 \int dx. \] ### Step 3: Simplify the first integral The first integral can be rewritten using the identity \(\frac{1}{\sin^2 x \cos^2 x} = \frac{1}{\sin^2 x} \cdot \frac{1}{\cos^2 x} = \sec^2 x \csc^2 x\): \[ I = \int \sec^2 x \csc^2 x \, dx - 3x. \] ### Step 4: Change of variables Let \(t = \tan x\), then \(dt = \sec^2 x \, dx\). The integral becomes: \[ I = \int \frac{1 + t^2}{t^2} \, dt - 3x. \] This can be split into: \[ I = \int \left(\frac{1}{t^2} + 1\right) dt - 3x. \] ### Step 5: Evaluate the integrals Now we can evaluate each integral: 1. \(\int \frac{1}{t^2} \, dt = -\frac{1}{t} + C_1\) 2. \(\int 1 \, dt = t + C_2\) Thus, \[ I = -\frac{1}{t} + t - 3x + C. \] ### Step 6: Substitute back \(t = \tan x\) Substituting back \(t = \tan x\): \[ I = -\cot x + \tan x - 3x + C. \] ### Final Answer The final answer for the integral is: \[ I = -\cot x + \tan x - 3x + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 1|135 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals int (dx)/(1+sin x+cos x)

Evaluate the following integral : int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)dx

Evaluate the following Integrals : int (dx)/(sin x(3+cos x))

Evaluate the following integrals. int (sinx + cos x)/((sin x - cos x)^(3))dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals: int_0^(pi//4)(sin^2xcos^2x)/((sin^3x+cos^3x)^2)dx

Evaluate the following integrals: int frac{sin^(-1)x}{(1-x^2)^(1backslash2)}dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx