Home
Class 12
MATHS
The integral int(pi//4)^(pi//2)(2 "cosec...

The integral `int_(pi//4)^(pi//2)(2 "cosec "x )^(17) dx` is equal to

A

`int_(0)^(log(1+sqrt(2)))2(e^(u)+e^(-u))^(16)du`

B

`int_(0)^(log(1+sqrt(2)))(e^(u)+e^(-u))^(17)du`

C

`int_(0)^(log(1+sqrt(2)))(e^(u)-e^(-u))^(17)du`

D

`int_(0)^(log(1+sqrt(2)))2(e^(u)-e^(-u))^(16)du`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int _(pi//4)^(pi//2) "cosec"^(2)xdx is equal to

int_((pi)/4)^((pi)/2)(2cosecx)^17 dx

Knowledge Check

  • int_(-pi//2)^(pi//2) sqrt((1-cos 2x)/( 2)) dx is equal to

    A
    0
    B
    `(1)/(2)`
    C
    1
    D
    2
  • int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

    A
    0
    B
    1
    C
    2
    D
    4
  • Similar Questions

    Explore conceptually related problems

    int_(pi/3)^(pi/2) cosec x dx=?

    int_(-pi//4)^(pi//4) "cosec"^(2) x dx

    The value of the definite integral int _(-(pi//2))^(pi//2)(cos ^(2) x )/(1+ 5 ^(x)) equal to:

    The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equal to

    solve int_(pi/4)^(pi/2) x^2 dx

    int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to