Home
Class 12
CHEMISTRY
The emf of the cell Cr(s) abs(Cr^(3+)(1....

The emf of the cell `Cr(s) abs(Cr^(3+)(1.0M))abs(Co^(2+)(1.0M))Co(s) [E^(o)" For " Cr^(3+)abs(Cr(s)=-0.74V & Co^(2+))Co(s) -0.28V]:`

A

`-0.74 - (-0.28)=-0.46V`

B

`-0.74 + (-0.28)=-1.02V`

C

`-0.28-(-0.74)=+0.46V`

D

`0.74+0.28=+1.02 V`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the EMF of the cell given by the equation: \[ \text{Cr(s)} | \text{Cr}^{3+}(1.0M) | \text{Co}^{2+}(1.0M) | \text{Co(s)} \] we will follow these steps: ### Step 1: Identify the Standard Reduction Potentials We are given the standard reduction potentials: - For the reaction \( \text{Cr}^{3+} + 3e^- \rightarrow \text{Cr(s)} \), \( E^\circ = -0.74 \, \text{V} \) - For the reaction \( \text{Co}^{2+} + 2e^- \rightarrow \text{Co(s)} \), \( E^\circ = -0.28 \, \text{V} \) ### Step 2: Determine Anode and Cathode The species with the higher reduction potential will act as the cathode (reduction occurs here), and the species with the lower reduction potential will act as the anode (oxidation occurs here). - Since \( -0.28 \, \text{V} > -0.74 \, \text{V} \), cobalt will be the cathode and chromium will be the anode. ### Step 3: Calculate the Standard EMF of the Cell The standard EMF of the cell (\( E^\circ_{\text{cell}} \)) can be calculated using the formula: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] Substituting the values: \[ E^\circ_{\text{cell}} = (-0.28 \, \text{V}) - (-0.74 \, \text{V}) \] \[ E^\circ_{\text{cell}} = -0.28 + 0.74 \] \[ E^\circ_{\text{cell}} = 0.46 \, \text{V} \] ### Step 4: Write the Half-Reactions - Anode (oxidation): \[ \text{Cr(s)} \rightarrow \text{Cr}^{3+} + 3e^- \] - Cathode (reduction): \[ \text{Co}^{2+} + 2e^- \rightarrow \text{Co(s)} \] ### Step 5: Equalize the Number of Electrons To combine the half-reactions, we need to equalize the number of electrons transferred. The least common multiple of 3 and 2 is 6. Therefore: - Multiply the chromium half-reaction by 2: \[ 2\text{Cr(s)} \rightarrow 2\text{Cr}^{3+} + 6e^- \] - Multiply the cobalt half-reaction by 3: \[ 3\text{Co}^{2+} + 6e^- \rightarrow 3\text{Co(s)} \] ### Step 6: Combine the Half-Reactions Combining the two half-reactions gives: \[ 2\text{Cr(s)} + 3\text{Co}^{2+} \rightarrow 2\text{Cr}^{3+} + 3\text{Co(s)} \] ### Step 7: Apply the Nernst Equation Now we will use the Nernst equation to find the cell potential under non-standard conditions: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0591}{n} \log \frac{[\text{Cr}^{3+}]^2}{[\text{Co}^{2+}]^3} \] Where: - \( n = 6 \) (total number of electrons transferred) - Both concentrations are 1.0 M, hence: \[ E_{\text{cell}} = 0.46 \, \text{V} - \frac{0.0591}{6} \log \frac{1^2}{1^3} \] \[ E_{\text{cell}} = 0.46 \, \text{V} - \frac{0.0591}{6} \log 1 \] Since \( \log 1 = 0 \): \[ E_{\text{cell}} = 0.46 \, \text{V} - 0 \] \[ E_{\text{cell}} = 0.46 \, \text{V} \] ### Final Answer The EMF of the cell is \( 0.46 \, \text{V} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    VMC MODULES ENGLISH|Exercise ENABLE|50 Videos
  • ELECTROCHEMISTRY

    VMC MODULES ENGLISH|Exercise EFFICIENT|46 Videos
  • ELECTROCHEMISTRY

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|76 Videos
  • CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE)|30 Videos
  • ENVIRONMENTAL CHEMISTRY

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|39 Videos

Similar Questions

Explore conceptually related problems

The cell emf for the cell Ni(s)abs(Ni^(2+)(1.0M))Au^(3+)(1.0M)| Au(s) (E^(o) for Ni^(2+) abs(Ni=-0.25 V,E^(o)" for " Au^(3+))Au=1.50V) is

Calculate the e.f.m of the cell Cr|Cr^(3+)(0.1M)||Fe^(2+)(0.01M)|Fe [given that E_(Cr^(3+)//Cr)^(@)=-0.75,E_(Fe^(2+)//Fe)^(@)=-0.45V]

Calculate the emf of the cell Cr∣ Cr^(3+)(0.1 M)∣∣Fe^(2+) (0.01M)∣Fe (Given: E^(@)Cr^(3+) /Cr =−0.75 volt; E^(@)Fe^(2+) /Fe =−0.45 volt).

What is the potential for the cell Cr|Cr^(3+)(0.1M)||Fe^(2+)(0.01M)|Fe E^(@)Cr^(3+)// Cr=-0.74V , E^(@)Fe^(2+)//Fe=-0.44V

Calculate E_(cell) for Cr|Cr^(3+)(0.04M)||Cr^(3+)(1M)|Cr :

Calculate the emf of the following cell at 298K : Fe(s) abs(Fe^(2+)(0.001M))abs(H^+(1M))H_2(g) (1"bar"),Pt(s) ( "Give E_("Cell")^@ = +0.44V )

Under standered condition Delta G^(@) for the reaction 2Cr(s)= 3Cd^(2+)(aq) rarr 2Cr_((a a))^(3+) +3Cd(s) is (E_(Cr^(3+)//Cr)^(@) = - 0.74 V, E_(Cd^(2+)//Cd)^(@) = - 0.4 V)

Calculate the potential of the following cell : Pt(s)|{:(Ce^(3+),(2M)) ,(Ce^(4+),(1M)):}||{:(Cr^(3+)(2M),) ,(Cr_(2)O_(7)^(2-)(1M),H^(o+)(1M)):}|Pt(s) Given :E^(c-)._(Ce^(3+)|Ce^(4+))=-1.7,E^(c-)._(Cr_(2)O_(7)^(2-)|Cr^(3+))=1.3V ( Take 0.059~~0.06)

Calculate the potential of the following cell : Pt|underset((2.0M)(1.0M))(Co^(2+),Co^(3+))|underset((1.0M)(4.0M)(1.0M))(Cr^(3+),Cr_(2)O_(7)^(2_-),H^(o+))|Pt E^(c-)._(Co^(2+)|Co^(3+))=-2V,E^(c-)._(Cr_(2)O_(7)^(2-)|Cr^(3+))=+1.0V

Calculate the standard cell potential of galvanic cell in which the following reaction takes place 2Cr_(s)+3Cd_(aq)^(+2)rarr2cr_(aq)^(+3)+3Cd_(s) Given E_(Cr^(+3)//Cr)=-0.74(V)E^(@)_(Cd^(+2)//Cd)=-0.04(V)