Home
Class 12
MATHS
In a DeltaABC if the length of the sides...

In a `DeltaABC` if the length of the sides are `sqrt(2), sqrt(6)` and `sqrt(8)`, then the measures of the angles are

A

`30^(@), 60^(@), 90^(@)`

B

`45^(@), 75^(@), 60^(@)`

C

`45^(@), 30^(@), 105^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the measures of the angles in triangle ABC with sides \( a = \sqrt{2} \), \( b = \sqrt{6} \), and \( c = \sqrt{8} \), we will use the Law of Cosines. ### Step 1: Identify the sides Let: - \( a = \sqrt{2} \) (opposite angle A) - \( b = \sqrt{6} \) (opposite angle B) - \( c = \sqrt{8} \) (opposite angle C) ### Step 2: Use the Law of Cosines to find angle A The Law of Cosines states: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Substituting the values: \[ \cos A = \frac{(\sqrt{6})^2 + (\sqrt{8})^2 - (\sqrt{2})^2}{2 \cdot \sqrt{6} \cdot \sqrt{8}} \] Calculating the squares: \[ \cos A = \frac{6 + 8 - 2}{2 \cdot \sqrt{6} \cdot \sqrt{8}} = \frac{12}{2 \cdot \sqrt{48}} = \frac{12}{2 \cdot 4\sqrt{3}} = \frac{12}{8\sqrt{3}} = \frac{3}{2\sqrt{3}} \] Rationalizing the denominator: \[ \cos A = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2} \] Thus, \[ A = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = 30^\circ \] ### Step 3: Use the Law of Cosines to find angle B Now we apply the Law of Cosines again to find angle B: \[ \cos B = \frac{c^2 + a^2 - b^2}{2ac} \] Substituting the values: \[ \cos B = \frac{(\sqrt{8})^2 + (\sqrt{2})^2 - (\sqrt{6})^2}{2 \cdot \sqrt{2} \cdot \sqrt{8}} \] Calculating the squares: \[ \cos B = \frac{8 + 2 - 6}{2 \cdot \sqrt{2} \cdot \sqrt{8}} = \frac{4}{2 \cdot \sqrt{16}} = \frac{4}{8} = \frac{1}{2} \] Thus, \[ B = \cos^{-1}\left(\frac{1}{2}\right) = 60^\circ \] ### Step 4: Find angle C Using the triangle sum property: \[ A + B + C = 180^\circ \] Substituting the known values: \[ 30^\circ + 60^\circ + C = 180^\circ \] Solving for C: \[ C = 180^\circ - 90^\circ = 90^\circ \] ### Conclusion The measures of the angles in triangle ABC are: - \( A = 30^\circ \) - \( B = 60^\circ \) - \( C = 90^\circ \) ### Final Answer Thus, the angles of triangle ABC are \( 30^\circ, 60^\circ, \) and \( 90^\circ \). ---

To find the measures of the angles in triangle ABC with sides \( a = \sqrt{2} \), \( b = \sqrt{6} \), and \( c = \sqrt{8} \), we will use the Law of Cosines. ### Step 1: Identify the sides Let: - \( a = \sqrt{2} \) (opposite angle A) - \( b = \sqrt{6} \) (opposite angle B) - \( c = \sqrt{8} \) (opposite angle C) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos

Similar Questions

Explore conceptually related problems

If a=1+sqrt(3), b=2 and c=sqrt(2) , then the measure of angleB is

Represent sqrt(6),\ sqrt(7),\ sqrt(8) on the number line.

Knowledge Check

  • 3sqrt(2^(5))sqrt(4^(9))sqrt(8)=

    A
    1.9
    B
    `2.0`
    C
    `2.1`
    D
    `2.3`
  • Similar Questions

    Explore conceptually related problems

    In DeltaABC , if the sides are 7, 4sqrt(3) and sqrt(13) cm, prove that the smallest angle is 30^(@) .

    In a DeltaABC , the median to the side BC is of length 1/sqrt(11-6sqrt3) and it divides the angleA into angles 30^@ and 45@. Find the length of the side BC.

    In a DeltaABC , the median to the side BC is of length 1/sqrt(11-6sqrt3) and it divides the angleA into angles 30^@ and 45@. Find the length of the side BC.

    Find the angles of the triangle whose sides are 3+ sqrt3, 2sqrt3 and sqrt6.

    Write in ascending order: 6 sqrt(5) , 7 sqrt(3) and 8 sqrt(2)

    If the sides of a triangle are proportional to 2,\ sqrt(6)\ a n d\ sqrt(3)-1, find the measure of its greatest angle.

    In a DeltaABC if b =a (sqrt3-1) and /_C =30^@ then the measure of the angle A is