Home
Class 12
MATHS
The length of the longer diagonal of the...

The length of the longer diagonal of the parallelogram constructed on ` 5veca + 2vecb and veca - 3vecb, ` if it is given that ` |veca|=2sqrt2, |vecb|=3 and veca. Vecb= pi/4` is

A

15

B

`sqrt3`

C

`sqrt593`

D

`sqrt369`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the longer diagonal of the parallelogram constructed on the vectors \( 5\vec{a} + 2\vec{b} \) and \( \vec{a} - 3\vec{b} \), we can follow these steps: ### Step 1: Identify the diagonals of the parallelogram The diagonals of the parallelogram are given by: - \( \alpha = (5\vec{a} + 2\vec{b}) + (\vec{a} - 3\vec{b}) \) - \( \beta = (5\vec{a} + 2\vec{b}) - (\vec{a} - 3\vec{b}) \) ### Step 2: Simplify the expressions for the diagonals Calculating \( \alpha \): \[ \alpha = 5\vec{a} + 2\vec{b} + \vec{a} - 3\vec{b} = (5\vec{a} + \vec{a}) + (2\vec{b} - 3\vec{b}) = 6\vec{a} - \vec{b} \] Calculating \( \beta \): \[ \beta = (5\vec{a} + 2\vec{b}) - (\vec{a} - 3\vec{b}) = (5\vec{a} - \vec{a}) + (2\vec{b} + 3\vec{b}) = 4\vec{a} + 5\vec{b} \] ### Step 3: Find the magnitudes of the diagonals To find the lengths of the diagonals, we need to calculate \( |\alpha| \) and \( |\beta| \). #### For \( |\alpha| \): \[ |\alpha| = |6\vec{a} - \vec{b}| = \sqrt{(6\vec{a})^2 + (-\vec{b})^2 - 2(6\vec{a}) \cdot (-\vec{b})} \] Using the formula \( |\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v} \): \[ |\alpha|^2 = 36|\vec{a}|^2 + |\vec{b}|^2 - 12\vec{a} \cdot \vec{b} \] #### Substitute the values: Given \( |\vec{a}| = 2\sqrt{2} \), \( |\vec{b}| = 3 \), and \( \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos(\theta) = 2\sqrt{2} \cdot 3 \cdot \frac{\pi}{4} \): \[ |\vec{a}|^2 = (2\sqrt{2})^2 = 8, \quad |\vec{b}|^2 = 3^2 = 9 \] \[ \vec{a} \cdot \vec{b} = 2\sqrt{2} \cdot 3 \cdot \frac{\pi}{4} = \frac{6\sqrt{2}\pi}{4} = \frac{3\sqrt{2}\pi}{2} \] Now substituting into the equation for \( |\alpha|^2 \): \[ |\alpha|^2 = 36 \cdot 8 + 9 - 12 \cdot \frac{3\sqrt{2}\pi}{2} \] \[ |\alpha|^2 = 288 + 9 - 18\sqrt{2}\pi \] \[ |\alpha|^2 = 297 - 18\sqrt{2}\pi \] #### For \( |\beta| \): \[ |\beta| = |4\vec{a} + 5\vec{b}| = \sqrt{(4\vec{a})^2 + (5\vec{b})^2 + 2(4\vec{a}) \cdot (5\vec{b})} \] \[ |\beta|^2 = 16|\vec{a}|^2 + 25|\vec{b}|^2 + 40\vec{a} \cdot \vec{b} \] Substituting the values: \[ |\beta|^2 = 16 \cdot 8 + 25 \cdot 9 + 40 \cdot \frac{3\sqrt{2}\pi}{2} \] \[ |\beta|^2 = 128 + 225 + 60\sqrt{2}\pi \] \[ |\beta|^2 = 353 + 60\sqrt{2}\pi \] ### Step 4: Determine the longer diagonal To find the longer diagonal, we compare \( |\alpha| \) and \( |\beta| \): - \( |\alpha| = \sqrt{297 - 18\sqrt{2}\pi} \) - \( |\beta| = \sqrt{353 + 60\sqrt{2}\pi} \) Since \( 353 + 60\sqrt{2}\pi > 297 - 18\sqrt{2}\pi \), we conclude that \( |\beta| \) is the longer diagonal. ### Final Answer Thus, the length of the longer diagonal is: \[ |\beta| = \sqrt{353 + 60\sqrt{2}\pi} \]

To find the length of the longer diagonal of the parallelogram constructed on the vectors \( 5\vec{a} + 2\vec{b} \) and \( \vec{a} - 3\vec{b} \), we can follow these steps: ### Step 1: Identify the diagonals of the parallelogram The diagonals of the parallelogram are given by: - \( \alpha = (5\vec{a} + 2\vec{b}) + (\vec{a} - 3\vec{b}) \) - \( \beta = (5\vec{a} + 2\vec{b}) - (\vec{a} - 3\vec{b}) \) ### Step 2: Simplify the expressions for the diagonals ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

Find vecA*vecB if |vecA|= 2, |vecB|= 5, and |vecAxx vecB|=8

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

(vecA+2vecB).(2vecA-3vecB) :-

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |veca|=6 and |vecb|=8 and veca and vecb are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |veca|=6 and |vecb|=8 and veca and vecb are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48