Home
Class 11
MATHS
If f(x) = (a-x^n)^(1/n) then fof(x) is ...

If `f(x) = (a-x^n)^(1/n)` then `fof(x)` is (A) x (B) a-x (C) `x^2` (D) `-1/x^n`

A

a

B

x

C

`x^(n)`

D

`a^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(f(x)) \) where \( f(x) = (a - x^n)^{1/n} \). ### Step-by-Step Solution: 1. **Write down the function**: \[ f(x) = (a - x^n)^{1/n} \] 2. **Find \( f(f(x)) \)**: We need to substitute \( f(x) \) into itself: \[ f(f(x)) = f((a - x^n)^{1/n}) \] 3. **Substitute \( f(x) \) into the function**: Replace \( x \) in \( f(x) \) with \( (a - x^n)^{1/n} \): \[ f(f(x)) = \left( a - \left( (a - x^n)^{1/n} \right)^n \right)^{1/n} \] 4. **Simplify the expression**: The term \( \left( (a - x^n)^{1/n} \right)^n \) simplifies to \( a - x^n \): \[ f(f(x)) = \left( a - (a - x^n) \right)^{1/n} \] 5. **Further simplification**: This simplifies to: \[ f(f(x)) = \left( x^n \right)^{1/n} \] 6. **Final simplification**: The expression \( \left( x^n \right)^{1/n} \) simplifies to \( x \): \[ f(f(x)) = x \] ### Conclusion: Thus, we find that \( f(f(x)) = x \). The correct answer is **(A) x**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|10 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If f(x) = (a-x^n)^(1/n), a > 0 and n in N , then prove that f(f(x)) = x for all x.

If f(x) = (x^n-a^n)/(x-a) , then f'(a) is a. 1 b. 1/2 c. 0 d. does not exist

Let f(x)=(x^2-1)^n(x^2+x+1) then f(x) has local extremum at x=1 when (a) n=2 (b) n=3 (c) n=4 (d) n=6

If f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))^(m+n)((x^n)/(x^l))^(n+l) , then f^(prime)(x) is equal to (a) 1 (b) 0 (c) x^(l+m+n) (d) none of these

If n is not a multiple of 3, then the coefficient of x^n in the expansion of log_e (1+x+x^2) is : (A) 1/n (B) 2/n (C) -1/n (D) -2/n

ifint(dx)/(x^2(x^n+1)^(((n-1)/n)) )=-[f(x)]^(1/n)+c ,t h e nf(x)i s (a) (1+x^n) (b) 1+x^(-1) (c) x^n+x^(-n) (d) none of these

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

f:N to N, where f(x)=x-(-1)^(x) , Then f is

If f(x)=(a-x^(n))^(1//n),"where a "gt 0" and "n in N , then fof (x) is equal to