Home
Class 11
MATHS
If Co C1, C2,.......,Cn denote the binom...

If `C_o C_1, C_2,.......,C_n` denote the binomial coefficients in the expansion of `(1 + x)^n`, then the value of `sum_(r=0)^n (r + 1) C_r` is

A

`(n2^(n))`

B

`(n +1)2^(n-1)`

C

`(n +2) 2^(n-1)`

D

`(n+2)2^(n -2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum \( S_n = \sum_{r=0}^{n} (r + 1) C_r \), where \( C_r \) are the binomial coefficients in the expansion of \( (1 + x)^n \). ### Step-by-Step Solution: 1. **Rewrite the Sum**: We can express \( S_n \) as: \[ S_n = \sum_{r=0}^{n} (r + 1) C_r = \sum_{r=0}^{n} r C_r + \sum_{r=0}^{n} C_r \] This separates the sum into two parts: one involving \( r C_r \) and the other just \( C_r \). 2. **Evaluate \( \sum_{r=0}^{n} C_r \)**: The sum \( \sum_{r=0}^{n} C_r \) is known to equal \( 2^n \) (the sum of the binomial coefficients). \[ \sum_{r=0}^{n} C_r = 2^n \] 3. **Evaluate \( \sum_{r=0}^{n} r C_r \)**: We can use the identity \( r C_r = n C_{r-1} \). Thus, \[ \sum_{r=0}^{n} r C_r = \sum_{r=1}^{n} n C_{r-1} = n \sum_{r=0}^{n-1} C_r \] The sum \( \sum_{r=0}^{n-1} C_r \) is equal to \( 2^{n-1} \) (the sum of the first \( n-1 \) binomial coefficients). \[ \sum_{r=0}^{n} r C_r = n \cdot 2^{n-1} \] 4. **Combine the Results**: Now we can combine the results from steps 2 and 3: \[ S_n = n \cdot 2^{n-1} + 2^n \] 5. **Factor the Expression**: We can factor out \( 2^{n-1} \): \[ S_n = 2^{n-1}(n + 2) \] ### Final Answer: Thus, the value of \( S_n \) is: \[ S_n = 2^{n-1}(n + 2) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_0,C_1,C_2,.......,C_n denote the binomial coefficients in the expansion of (1+1)^n, then sum_(0ler) sum_(< s le n) (C_r+C_s)

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_o, C_1, C_2 ....,C_n C denote the binomial coefficients in the expansion of (1 + x)^n, then 1^3. C_1 + 2^3 . C_2 + 3^3 .C_3 + ... + n^3 .C_n, =

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.