Home
Class 11
MATHS
The value of 16^("log"4^(3)), is...

The value of `16^("log"4^(3))`, is

A

8

B

3

C

4

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 16^{\log_4(3)} \), we can follow these steps: ### Step 1: Rewrite the base First, we rewrite \( 16 \) in terms of base \( 4 \): \[ 16 = 4^2 \] So, we can express the original expression as: \[ 16^{\log_4(3)} = (4^2)^{\log_4(3)} \] ### Step 2: Apply the power of a power property Using the property of exponents, \( (a^m)^n = a^{m \cdot n} \), we can simplify the expression: \[ (4^2)^{\log_4(3)} = 4^{2 \cdot \log_4(3)} \] ### Step 3: Use the logarithmic identity Now, we can use the logarithmic identity which states that \( a \cdot \log_b(c) = \log_b(c^a) \). Thus, we can rewrite \( 2 \cdot \log_4(3) \) as: \[ 2 \cdot \log_4(3) = \log_4(3^2) \] This gives us: \[ 4^{2 \cdot \log_4(3)} = 4^{\log_4(3^2)} \] ### Step 4: Apply the property of logarithms Now, we can use the property \( b^{\log_b(x)} = x \): \[ 4^{\log_4(3^2)} = 3^2 \] ### Step 5: Calculate the final value Calculating \( 3^2 \): \[ 3^2 = 9 \] Thus, the value of \( 16^{\log_4(3)} \) is: \[ \boxed{9} \] ---

To solve the expression \( 16^{\log_4(3)} \), we can follow these steps: ### Step 1: Rewrite the base First, we rewrite \( 16 \) in terms of base \( 4 \): \[ 16 = 4^2 \] So, we can express the original expression as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125))) , is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

If x=-2 , then the value of "log"_(4)((x^(2))/(4)) -2 "log"_(4)(4x^(4)), is

The value of 3^((log)_4 5)-5^((log)_4 3) is 0 (b) 1 (c) 2 (d) none of these

The value of 3^((log)_4 5)-5^((log)_4 3) is 0 (b) 1 (c) 2 (d) none of these

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.