Home
Class 11
MATHS
The value of 16^("log"4^(3)), is...

The value of `16^("log"4^(3))`, is

A

8

B

3

C

4

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 16^{\log_4(3)} \), we can follow these steps: ### Step 1: Rewrite the base First, we rewrite \( 16 \) in terms of base \( 4 \): \[ 16 = 4^2 \] So, we can express the original expression as: \[ 16^{\log_4(3)} = (4^2)^{\log_4(3)} \] ### Step 2: Apply the power of a power property Using the property of exponents, \( (a^m)^n = a^{m \cdot n} \), we can simplify the expression: \[ (4^2)^{\log_4(3)} = 4^{2 \cdot \log_4(3)} \] ### Step 3: Use the logarithmic identity Now, we can use the logarithmic identity which states that \( a \cdot \log_b(c) = \log_b(c^a) \). Thus, we can rewrite \( 2 \cdot \log_4(3) \) as: \[ 2 \cdot \log_4(3) = \log_4(3^2) \] This gives us: \[ 4^{2 \cdot \log_4(3)} = 4^{\log_4(3^2)} \] ### Step 4: Apply the property of logarithms Now, we can use the property \( b^{\log_b(x)} = x \): \[ 4^{\log_4(3^2)} = 3^2 \] ### Step 5: Calculate the final value Calculating \( 3^2 \): \[ 3^2 = 9 \] Thus, the value of \( 16^{\log_4(3)} \) is: \[ \boxed{9} \] ---

To solve the expression \( 16^{\log_4(3)} \), we can follow these steps: ### Step 1: Rewrite the base First, we rewrite \( 16 \) in terms of base \( 4 \): \[ 16 = 4^2 \] So, we can express the original expression as: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125))) , is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

If x=-2 , then the value of "log"_(4)((x^(2))/(4)) -2 "log"_(4)(4x^(4)), is

The value of 3^((log)_4 5)-5^((log)_4 3) is 0 (b) 1 (c) 2 (d) none of these

The value of 3^((log)_4 5)-5^((log)_4 3) is 0 (b) 1 (c) 2 (d) none of these

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. The value of 16^("log"4^(3)), is

    Text Solution

    |

  2. If x^((3)/(2)("log"(2) x-3)) = (1)/(8), then x equals to

    Text Solution

    |

  3. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  4. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  5. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  6. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  7. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  8. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  9. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  10. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  11. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  12. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  13. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  14. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  15. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  16. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  17. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  18. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  19. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  20. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  21. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |