Home
Class 11
MATHS
If 0 le a le x, then the minimum value o...

If `0 le a le x`, then the minimum value of
`"log"_(a) x + "log"_(x) x` is

A

1

B

2

C

0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`0 le a le x`
`rArr "log"_(a) x ge 1`
`rArr "log"_(a) x + "log"_(x) x ge 1 + "log"_(x) x = 1 + 1 =2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Statemen-1: If x lt 1 , then the least value of "log"_(2)x^(3) - "log"_(x) (0.125)" is "6 .

The maximum value of (log x)/( x) is

Knowledge Check

  • The minimum value of (x)/( log x) is

    A
    e
    B
    `(1)/(e)`
    C
    `e^(2)`
    D
    2e
  • Similar Questions

    Explore conceptually related problems

    If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

    For 0ltaltx , the minimum value of function log_a"" x+log_x a is 2.

    For x > 1 , the minimum value of 2 log_10(x)-log_x(0.01) is

    If g(x)=max(y^(2)-xy)(0le yle1) , then the minimum value of g(x) (for real x) is

    Solve 2 log_(3) x - 4 log_(x) 27 le 5 .

    If 0 le x le (pi)/(2) , then the number of value of x for which sin x - sin 2x + sin 3x = 0 , is

    Let 1 le x le 256 and M be the maximum value of (log_(2)x)^(4)+16(log_(2)x)^(2)log_(2)((16)/(x)) . The sum of the digits of M is :