Home
Class 12
MATHS
int(1)/((x-1)sqrt(x^(2)-1))dx equals...

`int(1)/((x-1)sqrt(x^(2)-1))dx` equals

A

`-sqrt((x-1)/(x+1))+C`

B

`sqrt((x-1)/(x+1))+C`

C

`sqrt((x+1)/(x-1))+C`

D

`-sqrt((x+1)/(x-1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{1}{(x-1) \sqrt{x^2 - 1}} \, dx, \] we will follow a series of steps: ### Step 1: Rewrite the integral We start by rewriting the integral in a more manageable form. The expression \(\sqrt{x^2 - 1}\) can be factored as: \[ \sqrt{x^2 - 1} = \sqrt{(x-1)(x+1)}. \] Thus, we can rewrite the integral as: \[ I = \int \frac{1}{(x-1) \sqrt{(x-1)(x+1)}} \, dx = \int \frac{1}{(x-1)^{3/2} \sqrt{x+1}} \, dx. \] ### Step 2: Multiply and divide by \((x+1)^{3/2}\) To simplify the integral further, we multiply and divide by \((x+1)^{3/2}\): \[ I = \int \frac{(x+1)^{3/2}}{(x-1)^{3/2} (x+1)} \, dx = \int \frac{(x+1)^{1/2}}{(x-1)^{3/2}} \, dx. \] ### Step 3: Substitution Now, we will use the substitution: \[ t = \frac{x-1}{x+1}. \] This implies: \[ x = \frac{1+t}{1-t}. \] Differentiating \(x\) with respect to \(t\): \[ dx = \frac{2}{(1-t)^2} \, dt. \] ### Step 4: Change of variables in the integral We need to express \((x+1)\) and \((x-1)\) in terms of \(t\): \[ x-1 = \frac{2t}{1-t}, \quad x+1 = \frac{2}{1-t}. \] Now substituting these into the integral gives: \[ I = \int \frac{\left(\frac{2}{1-t}\right)^{1/2}}{\left(\frac{2t}{1-t}\right)^{3/2}} \cdot \frac{2}{(1-t)^2} \, dt. \] ### Step 5: Simplifying the integral After simplification, we have: \[ I = \int \frac{2^{1/2}}{(2t)^{3/2}} \cdot \frac{2}{(1-t)^2} \, dt = \int \frac{1}{t^{3/2}(1-t)^2} \, dt. \] ### Step 6: Integrating Now we can integrate: \[ I = -2t^{-1/2} + C. \] ### Step 7: Back substitution Substituting back for \(t\): \[ t = \frac{x-1}{x+1} \implies I = -2 \left(\frac{x+1}{x-1}\right)^{1/2} + C. \] ### Final Result Thus, the final result for the integral is: \[ I = -\sqrt{\frac{x+1}{x-1}} + C. \]

To solve the integral \[ I = \int \frac{1}{(x-1) \sqrt{x^2 - 1}} \, dx, \] we will follow a series of steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

int(2x-1)/(sqrt(x^(2)-x-1))dx

Evaluate the following integrals : (i) int(1)/((x+1)sqrt(2x-3))dx (ii) int(1)/((x+1)sqrt(x^(2)+x-1))dx (iii) int(1)/((x^(2)+3x+3)sqrt(x+1))dx (iv) int(1)/((x^(2)-3x+2)sqrt(x^(2)-2))dx

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

Evaluate: int(x+1)/((x-1)sqrt(x+2))\ dx

int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx is equal to

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

int 1/((1-x^2)sqrt(1+x^2))dx

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to