Home
Class 12
MATHS
Let F(x) be an indefinite integral of si...

Let F(x) be an indefinite integral of `sin^(2)x`
Statement I The function F(x) satisfies `F(x+pi)=F(x)` for all real x.
Because
Statement II `sin^(2)(x+pi)=sin^(2)x,` for all real x.

A

Statement - 1 True , Statement -2 is True , Statement -2 is a correct explanation for Statement -1.

B

Statement - 1 is True , Statement -2 is True , Statement -2 is a correct explanation for Statement -1.

C

Statement - 1 True ,Statement - 2 is False.

D

Statement - 1 is False , Statement - 2 is True.

Text Solution

AI Generated Solution

To solve the problem, we need to analyze the two statements regarding the function \( F(x) \), which is an indefinite integral of \( \sin^2 x \). ### Step 1: Find the indefinite integral of \( \sin^2 x \) We know that: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Let F(x) be an indefinite integral of sin^(2)x Statement-1: The function F(x) satisfies F(x+pi)=F(x) for all real x. because Statement-2: sin^(3)(x+pi)=sin^(2)x for all real x. A) Statement-1: True , statement-2 is true, Statement -2 is not a correct explanation for statement -1 c) Statement-1 is True, Statement -2 is False. D) Statement-1 is False, Statement-2 is True.

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

Knowledge Check

  • If f(x)=2 for all real numbers x, then f(x+2)=

    A
    0
    B
    2
    C
    3
    D
    x
  • Similar Questions

    Explore conceptually related problems

    A function f(x) satisfies the functional equation x^2f(x)+f(1-x)=2x-x^4 for all real x. f(x) must be

    Let the function f satisfies f(x).f ′ (−x)=f(−x).f ′ (x) for all x and f(0)=3 The value of f(x).f(-x) for all x is

    Let f(x) = sin(x/3) + cos((3x)/10) for all real x. Find the least natural number n such that f(npi + x) = f(x) for all real x.

    If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

    If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

    Let f(x) be a function satisfying the condition f(-x) = f(x) for all real x. If f'(0) exists, then its value is equal to

    Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x in R . Then int_(-1//2)^(1//2) f(x+(1)/(2))sin x dx equals