Home
Class 12
MATHS
int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)co...

`int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx` is equal to

A

`e^(sinx)+C`

B

`e^(sinx-cosx)+C`

C

`e^(sinx+cosx)+C`

D

`e^(cosx-sinx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin x - \cos x}{\sqrt{1 - \sin 2x}} e^{\sin x \cos x} \, dx, \] we will follow these steps: ### Step 1: Simplify the denominator We know that \[ \sin 2x = 2 \sin x \cos x. \] Thus, we can rewrite the denominator: \[ 1 - \sin 2x = 1 - 2 \sin x \cos x. \] Using the identity \(\sin^2 x + \cos^2 x = 1\), we can express this as: \[ 1 - 2 \sin x \cos x = (\sin x - \cos x)^2. \] ### Step 2: Substitute the simplified denominator Now, substituting this back into the integral, we have: \[ I = \int \frac{\sin x - \cos x}{\sqrt{(\sin x - \cos x)^2}} e^{\sin x \cos x} \, dx. \] Since \(\sqrt{(\sin x - \cos x)^2} = |\sin x - \cos x|\), we can assume \(\sin x - \cos x\) is positive in the interval we are considering (or we can adjust the limits accordingly). Thus, we can simplify: \[ I = \int e^{\sin x \cos x} \, dx. \] ### Step 3: Use substitution Next, we can use the substitution: \[ u = e^{\sin x}, \quad \text{then} \quad du = e^{\sin x} \cos x \, dx. \] This means that: \[ dx = \frac{du}{e^{\sin x} \cos x} = \frac{du}{u \cos x}. \] ### Step 4: Substitute in the integral Now, substituting \(u\) into the integral, we have: \[ I = \int e^{\sin x \cos x} \frac{du}{u \cos x}. \] However, we notice that we can directly integrate \(e^{\sin x \cos x}\) without further substitutions. ### Step 5: Integrate The integral simplifies to: \[ I = \int e^{\sin x \cos x} \, dx. \] This integral can be directly evaluated as: \[ I = e^{\sin x} + C, \] where \(C\) is the constant of integration. ### Final Result Thus, the final result is: \[ I = e^{\sin x} + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(sinx+cosx)/(sqrt(1+sin2x))dx

int((sinx+cosx)/(sqrt(sin2x))dx

int (sinx+cosx)/sqrt(1+sin2x)dx .

int(x+sinx)/(1+cosx) dx is equal to

The value of int(sinx+cosx)/(sqrt(1-sin2x))\ dx is equal to (a) sqrt(sin2x)+C (b) sqrt(cos2x)+C (c) +-(sinx-cosx)+C (d) +-log(sinx-cosx)+C

Evaluate: int(sinx-cosx)/(sqrt(sin2x))dx

Evaluate: int(sinx+cosx)/(sqrt(1-sin2x))\ dx

Evaluate: int(sinx+cosx)/(sqrt(1-sin2x))\ dx

Evaluate: int(sinx+cosx)/(sqrt(1-sin2x))\ dx

int(In(tanx))/(sinx cosx)dx " is equal to "