Home
Class 12
MATHS
The primitive of the function f (x) =(2x...

The primitive of the function f (x) `=(2x+1)|cosx|`, when `(pi)/(2)ltxltpi` is given by

A

`cosx+x sin x`

B

`-cosx-xsinx`

C

`xsinx-cos x`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the primitive (indefinite integral) of the function \( f(x) = (2x + 1) |\cos x| \) in the interval \( \frac{\pi}{2} < x < \pi \), we can follow these steps: ### Step 1: Determine the expression for \( f(x) \) In the interval \( \frac{\pi}{2} < x < \pi \), the cosine function is negative. Therefore, the absolute value of cosine can be expressed as: \[ |\cos x| = -\cos x \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = (2x + 1)(-\cos x) = -(2x + 1)\cos x \] ### Step 2: Set up the integral We need to find the integral of \( f(x) \): \[ \int f(x) \, dx = \int -(2x + 1) \cos x \, dx \] ### Step 3: Apply integration by parts We will use integration by parts, which states: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = 2x + 1 \) \(\Rightarrow du = 2 \, dx\) - \( dv = \cos x \, dx \) \(\Rightarrow v = \sin x\) Now we can apply integration by parts: \[ \int -(2x + 1) \cos x \, dx = -\left[(2x + 1) \sin x - \int \sin x \cdot 2 \, dx\right] \] ### Step 4: Compute the integral Now we compute the integral: \[ = -\left[(2x + 1) \sin x - 2 \int \sin x \, dx\right] \] The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x \] So we have: \[ = -\left[(2x + 1) \sin x - 2(-\cos x)\right] \] \[ = -\left[(2x + 1) \sin x + 2\cos x\right] \] \[ = -(2x + 1) \sin x - 2\cos x \] ### Step 5: Add the constant of integration Finally, we include the constant of integration \( C \): \[ \int f(x) \, dx = -(2x + 1) \sin x - 2\cos x + C \] ### Final Answer Thus, the primitive of the function \( f(x) = (2x + 1) |\cos x| \) in the interval \( \frac{\pi}{2} < x < \pi \) is: \[ -(2x + 1) \sin x - 2\cos x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The primitive of the function f(x)= x | cos x| , when pi/2 lt x lt pi is given by

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in (-pi//2,pi//2) , is

Find the derivative of the function given by f(x)=(4sinx-2x-xcosx)/(2+cosx) with respect to x

Show that the function f(x) = |sinx+cosx| is continuous at x = pi .

Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x) ", "x ne pi),((1)/(2) ", " x=pi):}, at x=pi .

Given the function f(x) = x^(2) + 2x + 5 . Find f(-1), f(2), f(5).

For the function f(x)=sinx+2cosx,AA"x"in[0,2pi] we obtain

Prove that the function f(x)=cosx is strictly increasing in (pi,\ 2pi)

Find the intervals in which the function f given by f(x)=sinx+cosx ,\ \ 0lt=x\ lt=2pi is strictly increasing or strictly decreasing.