Home
Class 12
MATHS
If f(x)=sqrt(x^2+9) , write the value of...

If `f(x)=sqrt(x^2+9)` , write the value of `(lim)_(x->4)(f(x)-f(4))/(x-4)` .

A

`5//4`

B

`-4//5`

C

`4//5`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`f(x)=sqrt(x^(2)+9)`
`implies" "f'(x)=(x)/(sqrt(x^(2)+9))`
Now,
`underset(xto4)lim(f(x)-f(4))/(x-4)=f'(4)" "["By def. of derivative"]`
`implies" "underset(xto4)lim(f(x)-f(4))/(x-4)=(4)/(sqrt(4^(2)+9))=(4)/(5)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(1)=1,f^(prime)(1)=2, then write the value of lim_(x->1)(sqrt(f(x))-1)/(sqrt(x)-1)

If (lim)_(x->c)(f(x)-f(c))/(x-c) exists finitely, write the value of (lim)_(x->c)f(x) .

Knowledge Check

  • If f(x)=(sqrt(x^(2)-4))/(x-4) , what are all the values of x for which f(x) is defined ?

    A
    All real numbers except 4
    B
    All real numbers except - 2 and 2
    C
    All real numbers greater than or equal to -2 and less than or equal to 2
    D
    All real numbers less than or equal to -2 or greater than or equal to 2, except 4
  • Similar Questions

    Explore conceptually related problems

    If f(x)=4x-x^2, x in R , then write the value of f(a+1)-f(a-1)dot

    Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

    If f(2)=4 and f^(prime)(2)=1 , then find (lim)_(x->2)(x\ f(2)-2f\ (x))/(x-2) .

    If f(x) = 2x^4 - x^2 , what is the value of f(2sqrt(3)) ?

    If f(x)=cos(logx), then value of f(x) f(4)-1/2{f(x/4)+f(4x)} is (a) 1 (b) -1 (c) 0 (d) +- 1

    If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

    If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)