A
B
C
D
Text Solution
AI Generated Solution
The correct Answer is:
Topper's Solved these Questions
DIFFERENTIATION
OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 VideosDIFFERENTIATION
OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 VideosDIFFERENTIATION
OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 VideosDIFFERENTIALS, ERRORS AND APPROXIMATIONS
OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 VideosELLIPSE
OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
Similar Questions
Explore conceptually related problems
OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
- The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...
Text Solution
|
- If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals
Text Solution
|
- If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals
Text Solution
|
- If f(x)=logx(lnx) then f'(x) at x=e is
Text Solution
|
- Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(2))^(x^(3))f(t)" dt")
Text Solution
|
- If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)...
Text Solution
|
- If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to
Text Solution
|
- "If "y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n)))," then find "(dy)/(dx)a...
Text Solution
|
- Let f(x)=|cosx-sinx|, then f'((pi)/(4)) is equal to
Text Solution
|
- If f(x)=|cosx-sinx|, then f'(pi/2) is equal to
Text Solution
|
- If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.
Text Solution
|
- If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0...
Text Solution
|
- If f(x)= |cosxl, then f'((3pi)/4) equal to -
Text Solution
|
- If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to
Text Solution
|
- If x^2+y^2=1then
Text Solution
|
- If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...
Text Solution
|
- If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is
Text Solution
|
- "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to
Text Solution
|
- Let f be a differentiable function satisfying [f(x)]^(n)=f(nx) for all...
Text Solution
|
- If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:
Text Solution
|