Home
Class 12
MATHS
If f(x)=|x-2|" and "g(x)=f(f(x)), then f...

If `f(x)=|x-2|" and "g(x)=f(f(x)),` then for `2ltxlt4,g'(x)` equals

A

-1

B

1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given functions: 1. **Define the functions**: - \( f(x) = |x - 2| \) - \( g(x) = f(f(x)) \) 2. **Analyze \( f(x) \)**: - The function \( f(x) = |x - 2| \) can be expressed piecewise: - For \( x < 2 \), \( f(x) = 2 - x \) - For \( x \geq 2 \), \( f(x) = x - 2 \) 3. **Determine \( g(x) \)**: - We need to find \( g(x) = f(f(x)) \). - For the interval \( 2 < x < 4 \), since \( x \) is greater than 2, we have: - \( f(x) = x - 2 \) - Now we need to evaluate \( f(f(x)) \): - \( f(f(x)) = f(x - 2) \) - Since \( 2 < x < 4 \) implies \( 0 < x - 2 < 2 \), we use the piecewise definition: - \( f(x - 2) = 2 - (x - 2) = 4 - x \) 4. **So, we have**: - \( g(x) = 4 - x \) for \( 2 < x < 4 \). 5. **Differentiate \( g(x) \)**: - To find \( g'(x) \), we differentiate \( g(x) = 4 - x \): - \( g'(x) = -1 \) 6. **Conclusion**: - Therefore, for \( 2 < x < 4 \), \( g'(x) = -1 \). ### Final Answer: For \( 2 < x < 4 \), \( g'(x) = -1 \).

To solve the problem step by step, we start with the given functions: 1. **Define the functions**: - \( f(x) = |x - 2| \) - \( g(x) = f(f(x)) \) 2. **Analyze \( f(x) \)**: - The function \( f(x) = |x - 2| \) can be expressed piecewise: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

If f(x)=|x-2| and g(x)=f(f(x)) then g'(x)=

Knowledge Check

  • If f(x)=4x-5 and g(x)=3^(x) , then f(g(2)) =

    A
    3
    B
    9
    C
    27
    D
    31
  • If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

    A
    1
    B
    4
    C
    4.29
    D
    5.37
  • If f(x) =(4-x)^2 and g(x) =sqrtx , then (g o f) (x)=

    A
    `|4-x|`
    B
    `|2-x|`
    C
    `sqrt(x(4-x)^2)`
    D
    `(sqrt(4-x))^2`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

    If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

    If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

    Suppose that f(0)=0 and f'(0)=2, and g(x)=f(-x+f(f(x))). The value of g'(0) is equal to -

    If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is