Home
Class 12
MATHS
If f(x) = (x-1)/(x+1), then f(alphax)=...

If `f(x) = (x-1)/(x+1),` then `f(alphax)=`

A

`(f(x)+alpha)/(1+alpha f(x))`

B

`((alpha-1)f(x) + alpha +1)/((alpha+1)f(x)+(alpha-1))`

C

`((alpha+1)f(x) +alpha-1)/((alpha-1) f(x) + (alpha+1))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(\alpha x) \) given the function \( f(x) = \frac{x - 1}{x + 1} \). ### Step-by-Step Solution: 1. **Substituting \( \alpha x \) into the function:** \[ f(\alpha x) = \frac{\alpha x - 1}{\alpha x + 1} \] 2. **Rearranging the expression:** We can rewrite the expression for clarity: \[ f(\alpha x) = \frac{\alpha x - 1}{\alpha x + 1} \] 3. **Finding a common form:** To simplify, we can express \( f(\alpha x) \) in terms of \( f(x) \). We will use the relationship derived from the original function \( f(x) \): \[ x = \frac{1 + f(x)}{1 - f(x)} \] Thus, substituting \( \alpha x \) for \( x \): \[ \alpha x = \frac{1 + f(\alpha x)}{1 - f(\alpha x)} \] 4. **Cross-multiplying to eliminate the fraction:** We can cross-multiply: \[ \alpha x (1 - f(\alpha x)) = 1 + f(\alpha x) \] Expanding this gives: \[ \alpha x - \alpha x f(\alpha x) = 1 + f(\alpha x) \] 5. **Rearranging the equation:** Bringing all terms involving \( f(\alpha x) \) to one side: \[ \alpha x - 1 = f(\alpha x)(\alpha x + 1) \] 6. **Solving for \( f(\alpha x) \):** Now, we can isolate \( f(\alpha x) \): \[ f(\alpha x) = \frac{\alpha x - 1}{\alpha x + 1} \] 7. **Final expression:** Therefore, we conclude: \[ f(\alpha x) = \frac{\alpha - 1}{\alpha + 1} \cdot f(x) + \frac{\alpha - 1}{\alpha + 1} \] ### Conclusion: The expression for \( f(\alpha x) \) is: \[ f(\alpha x) = \frac{\alpha - 1}{\alpha + 1} + \frac{2}{\alpha + 1} \]

To solve the problem, we need to find \( f(\alpha x) \) given the function \( f(x) = \frac{x - 1}{x + 1} \). ### Step-by-Step Solution: 1. **Substituting \( \alpha x \) into the function:** \[ f(\alpha x) = \frac{\alpha x - 1}{\alpha x + 1} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

Consider the function f:R -{1} given by f (x)= (2x)/(x-1) Then f^(-1)(x) =

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))