Home
Class 12
MATHS
The function f(x)=log(10)((1+x)/(1-x)) s...

The function `f(x)=log_(10)((1+x)/(1-x))` satisfies the equation

A

`f(x+2)-2cd(x+1)+f(x)=0`

B

`f(x+1)+f(x)=f(x(x+1))`

C

`f(x_(1)(x_(2))=f(x_(1)+x_(2))`

D

`f(x_(1))+f_(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine which of the given equations is satisfied by the function \( f(x) = \log_{10} \left( \frac{1+x}{1-x} \right) \). We will evaluate each equation one by one. ### Step 1: Evaluate the first equation The first equation is: \[ -2f(x) + 1 + f(x) = 0 \] This simplifies to: \[ -f(x) + 1 = 0 \implies f(x) = 1 \] Now substituting \( f(x) \): \[ \log_{10} \left( \frac{1+x}{1-x} \right) = 1 \] This implies: \[ \frac{1+x}{1-x} = 10 \implies 1+x = 10(1-x) \implies 1+x = 10 - 10x \implies 11x = 9 \implies x = \frac{9}{11} \] Thus, \( f(x) \) does not equal 1 for all \( x \), so the first equation does not hold for all \( x \). ### Step 2: Evaluate the second equation The second equation is: \[ f(x) + 1 + f(x) = f(x) \cdot (x + 1) \] This simplifies to: \[ 2f(x) + 1 = f(x) \cdot (x + 1) \] Substituting \( f(x) \): \[ 2\log_{10} \left( \frac{1+x}{1-x} \right) + 1 = \log_{10} \left( \frac{1+x}{1-x} \right) \cdot (x + 1) \] This can be rewritten as: \[ \log_{10} \left( \left( \frac{1+x}{1-x} \right)^2 \cdot 10 \right) = \log_{10} \left( \frac{1+x}{1-x} \cdot (x + 1) \right) \] Taking the antilogarithm: \[ \frac{(1+x)^2}{(1-x)^2} \cdot 10 = \frac{(1+x)(x+1)}{1-x} \] This does not simplify to an identity, so the second equation also fails. ### Step 3: Evaluate the third equation The third equation is: \[ f(x_1) + f(x_2) = f(x_1 x_2) \] Substituting: \[ \log_{10} \left( \frac{1+x_1}{1-x_1} \right) + \log_{10} \left( \frac{1+x_2}{1-x_2} \right) = f(x_1) + f(x_2) \] This simplifies to: \[ \log_{10} \left( \frac{(1+x_1)(1+x_2)}{(1-x_1)(1-x_2)} \right) = \log_{10} \left( \frac{1+x_1 x_2}{1-x_1 x_2} \right) \] This does not hold true, so the third equation also fails. ### Step 4: Evaluate the fourth equation The fourth equation is: \[ f(x_1) + f(x_2) = f\left( \frac{x_1 + x_2}{1 + x_1 x_2} \right) \] Substituting: \[ \log_{10} \left( \frac{1+x_1}{1-x_1} \right) + \log_{10} \left( \frac{1+x_2}{1-x_2} \right) = \log_{10} \left( \frac{1 + \frac{x_1 + x_2}{1 + x_1 x_2}}{1 - \frac{x_1 + x_2}{1 + x_1 x_2}} \right) \] This simplifies to: \[ \log_{10} \left( \frac{(1+x_1)(1+x_2)}{(1-x_1)(1-x_2)} \right) = \log_{10} \left( \frac{(1+x_1 + x_2 + x_1 x_2)}{(1-x_1 - x_2 + x_1 x_2)} \right) \] Both sides are equal, confirming that the fourth equation holds. ### Conclusion The function \( f(x) = \log_{10} \left( \frac{1+x}{1-x} \right) \) satisfies the fourth equation.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

The function f(x)=log (1+x)-(2+x) is increasing in

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The function f(x) satisfies the equation f(x + 1) + f(x-1) = sqrt3 f(x) . then the period of f(x) is

The range of the function f(x)=sin{log_(10)((sqrt(4-x^(2)))/(1-x))} ,is

The function f(x)=cos(log(x+sqrt(x^2+1))) is :

Find domain of f(x)=log_(10)(1+x^(3)) .