Home
Class 12
MATHS
The domain of definition of f(x)=log(0.5...

The domain of definition of `f(x)=log_(0.5){-log_(2)((3x-1)/(3x+2))}`, is

A

`(-oo,-1//3)`

B

`(-1//3,oo)`

C

`(1//3,oo)`

D

`[1//3,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \log_{0.5} \left( -\log_{2} \left( \frac{3x-1}{3x+2} \right) \right) \), we need to ensure that the arguments of the logarithmic functions are valid. ### Step 1: Determine the condition for the inner logarithm The inner logarithm \( \log_{2} \left( \frac{3x-1}{3x+2} \right) \) must be positive: \[ \frac{3x-1}{3x+2} > 0 \] ### Step 2: Analyze the fraction The fraction \( \frac{3x-1}{3x+2} \) is positive when both the numerator and denominator are either both positive or both negative. 1. **Numerator**: \( 3x - 1 > 0 \) implies \( x > \frac{1}{3} \) 2. **Denominator**: \( 3x + 2 > 0 \) implies \( x > -\frac{2}{3} \) ### Step 3: Find critical points The critical points from the inequalities are: - \( x = \frac{1}{3} \) (where the numerator is zero) - \( x = -\frac{2}{3} \) (where the denominator is zero) ### Step 4: Test intervals We will test the intervals determined by these critical points: - \( (-\infty, -\frac{2}{3}) \) - \( (-\frac{2}{3}, \frac{1}{3}) \) - \( (\frac{1}{3}, \infty) \) 1. **Interval \( (-\infty, -\frac{2}{3}) \)**: Choose \( x = -1 \) \[ \frac{3(-1)-1}{3(-1)+2} = \frac{-3-1}{-3+2} = \frac{-4}{-1} = 4 > 0 \] This interval is valid. 2. **Interval \( (-\frac{2}{3}, \frac{1}{3}) \)**: Choose \( x = 0 \) \[ \frac{3(0)-1}{3(0)+2} = \frac{-1}{2} < 0 \] This interval is not valid. 3. **Interval \( (\frac{1}{3}, \infty) \)**: Choose \( x = 1 \) \[ \frac{3(1)-1}{3(1)+2} = \frac{3-1}{3+2} = \frac{2}{5} > 0 \] This interval is valid. ### Step 5: Combine results From the analysis, we find that the valid intervals for \( \frac{3x-1}{3x+2} > 0 \) are: \[ (-\infty, -\frac{2}{3}) \cup \left(\frac{1}{3}, \infty\right) \] ### Step 6: Condition for the outer logarithm Next, we need the outer logarithm \( -\log_{2} \left( \frac{3x-1}{3x+2} \right) \) to be positive: \[ -\log_{2} \left( \frac{3x-1}{3x+2} \right) > 0 \implies \log_{2} \left( \frac{3x-1}{3x+2} \right) < 0 \] This implies: \[ \frac{3x-1}{3x+2} < 1 \] ### Step 7: Solve the inequality Solving \( \frac{3x-1}{3x+2} < 1 \): \[ 3x - 1 < 3x + 2 \implies -1 < 2 \quad \text{(always true)} \] ### Step 8: Combine all conditions The domain of \( f(x) \) is determined by the intersection of the intervals: \[ (-\infty, -\frac{2}{3}) \cup \left(\frac{1}{3}, \infty\right) \] Thus, the final domain of the function \( f(x) \) is: \[ \boxed{(-\infty, -\frac{2}{3}) \cup \left(\frac{1}{3}, \infty\right)} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|94 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The domain of definition of f(x)=log_(3)|log_(e)x| , is

The domain of definition of f(x) = log_(2) (log_(3) (log_(4) x)) , is

The domain of definition of the function f(x)=log_(3){-log_(4)((6x-4)/(6x+5))} , is

The domain of definition of f(x)=log_(10) log_(10)…..log_(10)x n times, is

The domain of definition of f (x) = sin ^(-1) {log_(2)(x^(2) + 3x + 4)} , is

The domain of definition of the function f(x) = log_(3) {-log_(1//2)(1+(1)/(x^(1//5)))-1}

The domain of definition of the function f(x)=log_(2)[-(log_(2)x)^(2)+5log_(2)x-6] , is

The domain of definition of f(x)=log_(1.7)((2-phi'(x))/(x+1))^(1//2) , where phi(x)=(x^(3))/(3)-(3)/(2)x^(2)-2x+(3)/(2) , is

The domain of definition f(x)=sqrt(log_(0.4) ((x-1)/(x+5)))xx1/(x^2-36) is

The domain of the function f(x)=log_(3)[1-log_(6)(x^(2)-7x+16)] is