Home
Class 12
MATHS
Let veca ,vecb , vecc be three unit ve...

Let ` veca ,vecb , vecc` be three unit vectors such that angle between ` veca and vecb is alpha , vecb and vecc " is " beta and vecc and veca " is " gamma. " if " | veca. + vecb + vecc| =2` , then ` cos alpha + cos beta + cos gamma ` =

A

1

B

` -1/ 2`

C

` 3/2`

D

` 1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos \alpha + \cos \beta + \cos \gamma \) given that \( |\vec{a} + \vec{b} + \vec{c}| = 2 \) and that \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors with angles \( \alpha, \beta, \gamma \) between them. ### Step-by-Step Solution: 1. **Understanding the Magnitude of the Sum of Vectors**: We know that \( |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \) (since they are unit vectors). We can express the magnitude of the sum of the vectors: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \] 2. **Expanding the Dot Product**: Expanding the dot product gives us: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] Since \( |\vec{a}|^2 = |\vec{b}|^2 = |\vec{c}|^2 = 1 \), we have: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 1 + 1 + 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 3 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] 3. **Setting Up the Equation**: We know from the problem statement that: \[ |\vec{a} + \vec{b} + \vec{c}| = 2 \] Therefore: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 4 \] Equating the two expressions gives us: \[ 3 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 4 \] 4. **Solving for the Dot Products**: Rearranging the equation: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 4 - 3 = 1 \] Dividing by 2: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \frac{1}{2} \] 5. **Substituting the Dot Products**: Recall that: \[ \vec{a} \cdot \vec{b} = \cos \alpha, \quad \vec{b} \cdot \vec{c} = \cos \beta, \quad \vec{c} \cdot \vec{a} = \cos \gamma \] Therefore: \[ \cos \alpha + \cos \beta + \cos \gamma = \frac{1}{2} \] ### Final Answer: Thus, the value of \( \cos \alpha + \cos \beta + \cos \gamma \) is: \[ \boxed{\frac{1}{2}} \]

To solve the problem, we need to find the value of \( \cos \alpha + \cos \beta + \cos \gamma \) given that \( |\vec{a} + \vec{b} + \vec{c}| = 2 \) and that \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors with angles \( \alpha, \beta, \gamma \) between them. ### Step-by-Step Solution: 1. **Understanding the Magnitude of the Sum of Vectors**: We know that \( |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \) (since they are unit vectors). We can express the magnitude of the sum of the vectors: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Let veca , vecb,vecc be vectors of equal magnitude such that the angle between veca and vecb " is " alpha , vecb and vecc " is " beta and vecc and veca " is " gamma .then minimum value of cos alpha + cos beta + cos gamma is

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecb is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

Let veca , vecb , vecc be three unit vectors such that |veca + vecb +vecc| =1 and veca bot vecb , " if " vecc makes angles delta beta " with " veca, vecb respectively, then cos delta + cos beta is equal to

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then: