Home
Class 12
MATHS
If the vectors vec a =2hati + 3hatj +6ha...

If the vectors `vec a =2hati + 3hatj +6hatk and vec b` are collinear and ` |vec b |=21, " then " vec b=`
(A) `pm 3(2hati + 3 hatj + 6 hatk)`
(B) `pm (2hati + 3hatj - 6 hatk)`
(C)`pm 21(2hati + 3 hatj + 6 hatk)`
(D)`pm 21(hati + hatj + hatk)`

A

`pm 3(2hati + 3 hatj + 6 hatk)`

B

`pm (2hati + 3hatj - 6 hatk)`

C

`pm 21(2hati + 3 hatj + 6 hatk)`

D

`pm 21(hati + hatj + hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the vector \(\vec{b}\) given that it is collinear with \(\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}\) and has a magnitude of 21. ### Step 1: Understand the relationship between collinear vectors If two vectors are collinear, one can be expressed as a scalar multiple of the other. Therefore, we can write: \[ \vec{b} = \lambda \vec{a} \] for some scalar \(\lambda\). ### Step 2: Calculate the magnitude of vector \(\vec{a}\) The magnitude of vector \(\vec{a}\) is calculated using the formula: \[ |\vec{a}| = \sqrt{(a_x)^2 + (a_y)^2 + (a_z)^2} \] Substituting the components of \(\vec{a}\): \[ |\vec{a}| = \sqrt{(2)^2 + (3)^2 + (6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] ### Step 3: Relate the magnitudes of \(\vec{b}\) and \(\vec{a}\) We know that the magnitude of \(\vec{b}\) is given as 21. Therefore, we can set up the equation: \[ |\vec{b}| = |\lambda \vec{a}| = |\lambda| |\vec{a}| \] Substituting the known values: \[ 21 = |\lambda| \cdot 7 \] ### Step 4: Solve for \(|\lambda|\) To find \(|\lambda|\), we rearrange the equation: \[ |\lambda| = \frac{21}{7} = 3 \] Thus, \(\lambda\) can be either \(3\) or \(-3\), giving us: \[ \lambda = \pm 3 \] ### Step 5: Substitute \(\lambda\) back to find \(\vec{b}\) Now we substitute \(\lambda\) back into the expression for \(\vec{b}\): \[ \vec{b} = \lambda \vec{a} = \pm 3(2\hat{i} + 3\hat{j} + 6\hat{k}) \] This simplifies to: \[ \vec{b} = \pm (6\hat{i} + 9\hat{j} + 18\hat{k}) \] ### Step 6: Check the options We need to match this result with the given options. The expression \(6\hat{i} + 9\hat{j} + 18\hat{k}\) can be factored as: \[ \vec{b} = \pm 3(2\hat{i} + 3\hat{j} + 6\hat{k}) \] This matches option (A). ### Final Answer Thus, the correct answer is: \[ \vec{b} = \pm 3(2\hat{i} + 3\hat{j} + 6\hat{k}) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

Show that the vectors 2hati-3hatj+4hatk and -4hati+6hatj-8hatk are collinear.

Knowledge Check

  • If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

    A
    `((9)/(4) , (8)/(3))`
    B
    `(- (9)/(4), (8)/(3))`
    C
    `((9)/(4), - (8)/(3))`
    D
    `(- (9)/(4), - (8)/(3))`
  • Similar Questions

    Explore conceptually related problems

    The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hatk and is coplanar with vectors 2hati + hatj + hatk and hati - hatj + hatk is (a) (2hati - 6hatj + hatk)/sqrt41 (b) (2hati-3hatj)/sqrt13 (c) (3 hatj -hatk)/sqrt10 (d) (4hati + 3hatj - 3hatk)/sqrt34

    if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

    if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

    Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

    If the vectors hati-hatj, hatj+hatk and veca form a triangle then veca may be (A) -hati-hatk (B) hati-2hatj-hatk (C) 2hati+hatj+hatjk (D) hati+hatk

    If the vectors hati-hatj, hatj+hatk and veca form a triangle then veca may be (A) -hati-hatk (B) hati-2hatj-hatk (C) 2hati+hatj+hatjk (D) hati+hatk

    If vectors vecA=2hati+3hatj+4hatk, vecB=hati+hatj+5hatk and vecC form a left handed system then vecC is (A) 11hati-6hatj-hatk (B) -11hati+6hatj+hatk (C) -11hati+6hatj-hatk (D) -11hati+6hatj-hatk