Home
Class 12
MATHS
A point O is the centre of a circle circ...

A point `O` is the centre of a circle circumscribed about a triangle`A B Cdot` Then ` vec O Asin2A+ vec O Bsin2B+ vec O Csin2C` is equal to a. `( vec O A""+ vec O B""+ vec O C)sin2A` b. `3 vec O G ,w h e r eG` is the centroid of triangle `A B C` c. ` vec0` d. none of these

A

`(O vec a + O vec B + O vec C ) sin 2 A `

B

`3 vec(OG), ` where G is the centroid of triangle ABC

C

`vec 0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If G is the centroid of triangle A B C ,t h e n vec G A+ vec G B+ vec G C is equal to a. vec0 b. 3 vec G A c. 3 vec G B d. 3 vec G C

If O\ a n d\ O^(prime) are circumcentre and orthocentre of \ A B C ,\ t h e n\ vec O A+ vec O B+ vec O C equals a. 2 vec O O ' b. vec O O ' c. vec O ' O d. 2 vec O ' O

if vec (AO) + vec (O B) = vec (B O) + vec (O C) ,than prove that B is the midpoint of AC .

if vec Ao + vec O B = vec B O + vec O C ,than prove that B is the midpoint of AC.

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If 2 vec A C = 3 vec C B , then prove that 2 vec O A =3 vec C B then prove that 2 vec O A + 3 vec O B =5 vec O C where O is the origin.

If vec A O+ vec O B= vec B O+ vec O C , prove that A , B , C are collinear points.

If vec A O+ vec O B= vec B O+ vec O C , prove that A , B , C are collinear points.