Home
Class 12
MATHS
If theta in [(pi)/(2),3(pi)/(2)] then si...

If `theta in [(pi)/(2),3(pi)/(2)] then sin^(-1)(sin theta)` equals

A

`theta`

B

`pi - theta`

C

`2pi - theta`

D

`-pi + theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( \sin^{-1}(\sin \theta) \) given that \( \theta \) is in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \). ### Step-by-Step Solution: 1. **Understanding the Interval**: - The interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \) includes angles where the sine function takes values from 1 (at \( \frac{\pi}{2} \)) to -1 (at \( \frac{3\pi}{2} \)). - In this interval, the sine function is negative for angles between \( \pi \) and \( \frac{3\pi}{2} \). 2. **Using the Property of Sine**: - We know that \( \sin(\pi - \theta) = \sin \theta \). This property will help us relate \( \theta \) to an angle in the first or fourth quadrant where the sine function is positive. 3. **Finding the Equivalent Angle**: - If we take \( -\theta \), we can find an equivalent angle in the range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). - For \( \theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we can express \( \theta \) as \( \theta = \pi + x \) where \( x \) is in the range \( \left[-\frac{\pi}{2}, 0\right] \). 4. **Applying the Inverse Sine Function**: - Therefore, \( \sin^{-1}(\sin \theta) \) can be expressed as: \[ \sin^{-1}(\sin \theta) = \sin^{-1}(\sin(\pi - \theta)) = \pi - \theta \] - Since \( \theta \) is in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we can conclude: \[ \sin^{-1}(\sin \theta) = \pi - \theta \] 5. **Final Result**: - Thus, the final answer is: \[ \sin^{-1}(\sin \theta) = \pi - \theta \]

To solve the problem, we need to evaluate \( \sin^{-1}(\sin \theta) \) given that \( \theta \) is in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \). ### Step-by-Step Solution: 1. **Understanding the Interval**: - The interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \) includes angles where the sine function takes values from 1 (at \( \frac{\pi}{2} \)) to -1 (at \( \frac{3\pi}{2} \)). - In this interval, the sine function is negative for angles between \( \pi \) and \( \frac{3\pi}{2} \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If beta is one of the angles between the normals to the ellipse, x^2+3y^2=9 at the points (3 cos theta, sqrt(3) sin theta)" and "(-3 sin theta, sqrt(3) cos theta), theta in (0,(pi)/(2)) , then (2 cot beta)/(sin 2 theta) is equal to:

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

For any theta epsilon((pi)/4,(pi)/2) the expression 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4sin^(6)theta equals:

The number of values of theta in [(-3pi)/(2), (4pi)/(3)] which satisfies the system of equations. 2 sin^(2) theta + sin ^(2) 2 theta = 2 and sin 2 theta + cos 2 theta = tan theta is

If A= [{:(1, "sin"theta,1), (-"sin"theta, 1, "sin" theta),(-1, -"sin"theta, 1):}], " then for all "theta in ((3pi)/(4), (5pi)/(4)) det (A) lies in the interval

Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is purely imaginary } Then the sum of the elements in A is

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

Statement -1: If (pi)/(12)lethetale(pi)/(3), then sin(theta-(pi)/(4))sin(theta-(7pi)/(12))sin(theta+(pi)/(12))"lies between"-(1)/(4sqrt2)and 1/4. Statement-2: The value of sin thetasin((pi)/(3)-theta)sin((pi)/(3)+theta)is 1/4sin3theta.