Home
Class 12
MATHS
If theta in [4 pi, 5pi] then cos^(-1)(co...

If `theta in [4 pi, 5pi] then cos^(-1)(cos theta)` equals

A

`-4pi+theta`

B

`5 pi - theta`

C

`4 pi - theta`

D

`theta-5pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^{-1}(\cos \theta) \) when \( \theta \) is in the range \( [4\pi, 5\pi] \). ### Step-by-Step Solution: 1. **Understanding the Range of \( \cos^{-1} \)**: The function \( \cos^{-1}(x) \) has a range of \( [0, \pi] \). This means that for any angle \( \theta \), \( \cos^{-1}(\cos \theta) \) will yield a result within this range. **Hint**: Remember that \( \cos^{-1}(x) \) returns angles in the range from 0 to \( \pi \). 2. **Finding the Equivalent Angle**: Since \( \theta \) is in the interval \( [4\pi, 5\pi] \), we need to find an equivalent angle for \( \theta \) that lies within the range of \( [0, \pi] \). The cosine function is periodic with a period of \( 2\pi \). Therefore, we can reduce \( \theta \) by subtracting \( 2\pi \) until it falls within the desired range. \[ \theta - 4\pi \quad \text{(since \( 4\pi \) is the lower limit)} \] Thus, we can express \( \theta \) as: \[ \theta = 4\pi + x \quad \text{where } 0 \leq x < 2\pi \] 3. **Calculating \( \cos \theta \)**: Now, we can calculate \( \cos \theta \): \[ \cos \theta = \cos(4\pi + x) = \cos x \] This is because \( \cos \) is an even function, and \( \cos(4\pi + x) = \cos x \). **Hint**: Use the periodicity of the cosine function to simplify the angle. 4. **Finding \( \cos^{-1}(\cos \theta) \)**: Now, we need to find \( \cos^{-1}(\cos \theta) \): \[ \cos^{-1}(\cos \theta) = \cos^{-1}(\cos(4\pi + x)) = \cos^{-1}(\cos x) \] Since \( x \) is in the range \( [0, 2\pi) \), we need to determine where \( x \) falls: - If \( x \in [0, \pi] \), then \( \cos^{-1}(\cos x) = x \). - If \( x \in (\pi, 2\pi) \), then \( \cos^{-1}(\cos x) = 2\pi - x \). 5. **Determining the Final Result**: Since \( \theta \) is in the range \( [4\pi, 5\pi] \), we can conclude: - If \( \theta = 4\pi + x \) where \( x \in [0, 2\pi) \), then: - For \( x \in [0, \pi] \), \( \cos^{-1}(\cos \theta) = x \). - For \( x \in (\pi, 2\pi) \), \( \cos^{-1}(\cos \theta) = 2\pi - x \). However, since \( \theta \) is always greater than \( 4\pi \), we can express it as: \[ \cos^{-1}(\cos \theta) = \theta - 4\pi \] Therefore, the final answer is: \[ \cos^{-1}(\cos \theta) = \theta - 4\pi \] ### Conclusion: The value of \( \cos^{-1}(\cos \theta) \) when \( \theta \) is in the interval \( [4\pi, 5\pi] \) is \( \theta - 4\pi \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If costheta+sectheta=-2, theta in [0,2pi] then sin^8theta+cos^8theta is equal to

If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi//4) is equal to

Knowledge Check

  • The number of values of theta in [0, 2pi] that satisfies the equation sin^(2)theta - cos theta = (1)/(4)

    A
    4
    B
    3
    C
    2
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

    Let f( theta) = ( cos theta - "cos" (pi)/(8))(cos theta - "cos" (3 pi)/(8))(cos theta - "cos" (5 pi)/(8) )(cos theta - "cos" (7pi)/(8)) then :

    If tan( pi cos theta) = cot ( pi sin theta) then sin (theta + pi/4) equals

    If f(theta)=|(cos^(2)theta ,cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2)theta,cos theta),(sin theta,-cos theta,0)| then, f((pi)/(6))+f((pi)/(3))+f((pi)/(2))+f((2pi)/(3))+f((5pi)/(6))+f(pi)+……+f((53pi)/(6)) is equal to

    If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

    If tan theta=-3/4 and pi/2 < theta < pi, find the values of sin theta,cos theta and cot theta .

    If 0 lt theta_(2) lt theta_(1) lt pi/4, cos (theta_(1) + theta_(2)) = 3/5 and cos(theta_(1)-theta_(2))=4/5 , then sintheta_(1) sintheta_(2) equal to