Home
Class 12
MATHS
int(0)^(10)|x(x-1)(x-2)|dx is equal to...

`int_(0)^(10)|x(x-1)(x-2)|dx` is equal to

A

`160.05`

B

`1600.5`

C

`16.005`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{10} |x(x-1)(x-2)| \, dx \), we will first analyze the expression inside the absolute value to determine where it is positive and negative. ### Step 1: Identify the roots of the function The expression \( x(x-1)(x-2) \) has roots at \( x = 0, 1, 2 \). We will evaluate the sign of the expression in the intervals determined by these roots: \( (-\infty, 0) \), \( (0, 1) \), \( (1, 2) \), and \( (2, \infty) \). ### Step 2: Determine the sign of \( x(x-1)(x-2) \) - For \( x < 0 \): The expression is negative. - For \( 0 < x < 1 \): The expression is positive. - For \( 1 < x < 2 \): The expression is negative. - For \( x > 2 \): The expression is positive. ### Step 3: Set up the integral with absolute values Now we can express the integral as: \[ I = \int_{0}^{1} x(x-1)(x-2) \, dx - \int_{1}^{2} x(x-1)(x-2) \, dx + \int_{2}^{10} x(x-1)(x-2) \, dx \] ### Step 4: Calculate each integral 1. **From \( 0 \) to \( 1 \)**: \[ \int_{0}^{1} x(x-1)(x-2) \, dx = \int_{0}^{1} (x^3 - 3x^2 + 2x) \, dx \] Evaluating this integral: \[ = \left[ \frac{x^4}{4} - x^3 + x^2 \right]_{0}^{1} = \left( \frac{1}{4} - 1 + 1 \right) - 0 = \frac{1}{4} \] 2. **From \( 1 \) to \( 2 \)**: \[ -\int_{1}^{2} x(x-1)(x-2) \, dx = -\int_{1}^{2} (x^3 - 3x^2 + 2x) \, dx \] Evaluating this integral: \[ = -\left[ \frac{x^4}{4} - x^3 + x^2 \right]_{1}^{2} = -\left( \left( \frac{16}{4} - 8 + 4 \right) - \left( \frac{1}{4} - 1 + 1 \right) \right) \] \[ = -\left( 4 - 8 + 4 - \frac{1}{4} + 1 - 1 \right) = -\left( 0 - \frac{1}{4} \right) = \frac{1}{4} \] 3. **From \( 2 \) to \( 10 \)**: \[ \int_{2}^{10} x(x-1)(x-2) \, dx = \int_{2}^{10} (x^3 - 3x^2 + 2x) \, dx \] Evaluating this integral: \[ = \left[ \frac{x^4}{4} - x^3 + x^2 \right]_{2}^{10} = \left( \frac{10000}{4} - 1000 + 100 \right) - \left( \frac{16}{4} - 8 + 4 \right) \] \[ = \left( 2500 - 1000 + 100 \right) - (4 - 8 + 4) = 1600 - 0 = 1600 \] ### Step 5: Combine the results Now we combine the results of the integrals: \[ I = \frac{1}{4} + \frac{1}{4} + 1600 = \frac{2}{4} + 1600 = \frac{1}{2} + 1600 = 1600.5 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{1600.5} \]

To solve the integral \( I = \int_{0}^{10} |x(x-1)(x-2)| \, dx \), we will first analyze the expression inside the absolute value to determine where it is positive and negative. ### Step 1: Identify the roots of the function The expression \( x(x-1)(x-2) \) has roots at \( x = 0, 1, 2 \). We will evaluate the sign of the expression in the intervals determined by these roots: \( (-\infty, 0) \), \( (0, 1) \), \( (1, 2) \), and \( (2, \infty) \). ### Step 2: Determine the sign of \( x(x-1)(x-2) \) - For \( x < 0 \): The expression is negative. - For \( 0 < x < 1 \): The expression is positive. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of x, then int_(0)^(x)({x}-(1)/(2)) dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

int_(0)^(2) |x^(2)+2x-3|dx is equal to

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

int_(0)^(3)(|x|+|x-1|+|x-2|)dx equals

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

The value of (int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx) is equal to

int_(0)^(1.5) [x^(2)]dx is equal to