Home
Class 12
MATHS
int(0)^(10)|x(x-1)(x-2)|dx is equal to...

`int_(0)^(10)|x(x-1)(x-2)|dx` is equal to

A

`160.05`

B

`1600.5`

C

`16.005`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{10} |x(x-1)(x-2)| \, dx \), we will first analyze the expression inside the absolute value to determine where it is positive and negative. ### Step 1: Identify the roots of the function The expression \( x(x-1)(x-2) \) has roots at \( x = 0, 1, 2 \). We will evaluate the sign of the expression in the intervals determined by these roots: \( (-\infty, 0) \), \( (0, 1) \), \( (1, 2) \), and \( (2, \infty) \). ### Step 2: Determine the sign of \( x(x-1)(x-2) \) - For \( x < 0 \): The expression is negative. - For \( 0 < x < 1 \): The expression is positive. - For \( 1 < x < 2 \): The expression is negative. - For \( x > 2 \): The expression is positive. ### Step 3: Set up the integral with absolute values Now we can express the integral as: \[ I = \int_{0}^{1} x(x-1)(x-2) \, dx - \int_{1}^{2} x(x-1)(x-2) \, dx + \int_{2}^{10} x(x-1)(x-2) \, dx \] ### Step 4: Calculate each integral 1. **From \( 0 \) to \( 1 \)**: \[ \int_{0}^{1} x(x-1)(x-2) \, dx = \int_{0}^{1} (x^3 - 3x^2 + 2x) \, dx \] Evaluating this integral: \[ = \left[ \frac{x^4}{4} - x^3 + x^2 \right]_{0}^{1} = \left( \frac{1}{4} - 1 + 1 \right) - 0 = \frac{1}{4} \] 2. **From \( 1 \) to \( 2 \)**: \[ -\int_{1}^{2} x(x-1)(x-2) \, dx = -\int_{1}^{2} (x^3 - 3x^2 + 2x) \, dx \] Evaluating this integral: \[ = -\left[ \frac{x^4}{4} - x^3 + x^2 \right]_{1}^{2} = -\left( \left( \frac{16}{4} - 8 + 4 \right) - \left( \frac{1}{4} - 1 + 1 \right) \right) \] \[ = -\left( 4 - 8 + 4 - \frac{1}{4} + 1 - 1 \right) = -\left( 0 - \frac{1}{4} \right) = \frac{1}{4} \] 3. **From \( 2 \) to \( 10 \)**: \[ \int_{2}^{10} x(x-1)(x-2) \, dx = \int_{2}^{10} (x^3 - 3x^2 + 2x) \, dx \] Evaluating this integral: \[ = \left[ \frac{x^4}{4} - x^3 + x^2 \right]_{2}^{10} = \left( \frac{10000}{4} - 1000 + 100 \right) - \left( \frac{16}{4} - 8 + 4 \right) \] \[ = \left( 2500 - 1000 + 100 \right) - (4 - 8 + 4) = 1600 - 0 = 1600 \] ### Step 5: Combine the results Now we combine the results of the integrals: \[ I = \frac{1}{4} + \frac{1}{4} + 1600 = \frac{2}{4} + 1600 = \frac{1}{2} + 1600 = 1600.5 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{1600.5} \]

To solve the integral \( I = \int_{0}^{10} |x(x-1)(x-2)| \, dx \), we will first analyze the expression inside the absolute value to determine where it is positive and negative. ### Step 1: Identify the roots of the function The expression \( x(x-1)(x-2) \) has roots at \( x = 0, 1, 2 \). We will evaluate the sign of the expression in the intervals determined by these roots: \( (-\infty, 0) \), \( (0, 1) \), \( (1, 2) \), and \( (2, \infty) \). ### Step 2: Determine the sign of \( x(x-1)(x-2) \) - For \( x < 0 \): The expression is negative. - For \( 0 < x < 1 \): The expression is positive. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of x, then int_(0)^(x)({x}-(1)/(2)) dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

int_(0)^(2) |x^(2)+2x-3|dx is equal to

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

int_(0)^(3)(|x|+|x-1|+|x-2|)dx equals

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

The value of (int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx) is equal to

int_(0)^(1.5) [x^(2)]dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. int(0)^(10)|x(x-1)(x-2)|dx is equal to

    Text Solution

    |

  2. If int(0) ^(x) f (t) dt = x + int (x ) ^(1) t f (t) dt, then the v...

    Text Solution

    |

  3. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  4. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  5. If l(n)=int(0)^(pi//4) tan^(n)x dx, n in N "then" I(n+2)+I(n) equals

    Text Solution

    |

  6. If rArr I(n)=int(0)^(pi//4) tan ^(n)x dx, then for any positive integ...

    Text Solution

    |

  7. Find the value of int(-1)^1d/(dx)(tan^(-1)(1/x))dx

    Text Solution

    |

  8. The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(...

    Text Solution

    |

  9. If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to

    Text Solution

    |

  10. If =int(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I(n)-nI(n-1)=

    Text Solution

    |

  11. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x)+sqrtx)dx, is

    Text Solution

    |

  12. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  13. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x)(1)/(1+t^(2))...

    Text Solution

    |

  14. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  15. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  16. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  17. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  18. If f(x) is periodic function with period, T, then

    Text Solution

    |

  19. The value of lim(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n)...

    Text Solution

    |

  20. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |