Home
Class 12
MATHS
Statement-1: int(0)^(pi//2) x cot x dx=(...

Statement-1: `int_(0)^(pi//2) x cot x dx=(pi)/(2)log2`
Statement-2: `int_(0)^(pi//2) log sin x dx=-(pi)/(2)log2`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Step 1: Evaluate Statement 2 We start with the second statement: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx = -\frac{\pi}{2} \log 2 \] This result is a well-known integral. To understand why this is true, we can use the property of definite integrals. We can also consider the integral of \(\log(\cos x)\): \[ \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx \] Using the substitution \(x = \frac{\pi}{2} - t\), we find that: \[ \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx = \int_{0}^{\frac{\pi}{2}} \log(\sin t) \, dt \] This means: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx + \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx = \int_{0}^{\frac{\pi}{2}} \log(\sin x \cos x) \, dx \] Using the identity \(\sin x \cos x = \frac{1}{2} \sin(2x)\), we have: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin x \cos x) \, dx = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2} \sin(2x)\right) \, dx \] This simplifies to: \[ \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\right) \, dx + \int_{0}^{\frac{\pi}{2}} \log(\sin(2x)) \, dx \] The first integral evaluates to \(-\frac{\pi}{2} \log(2)\), and the second integral can be evaluated using the substitution \(u = 2x\), yielding: \[ \frac{1}{2} \int_{0}^{\pi} \log(\sin u) \, du = \frac{1}{2} \cdot -\frac{\pi}{2} \log(2) = -\frac{\pi}{4} \log(2) \] Combining these results, we find: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx + \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx = -\frac{\pi}{2} \log(2) \] Since both integrals are equal, we conclude: \[ 2 \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx = -\frac{\pi}{2} \log(2) \implies \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx = -\frac{\pi}{2} \log(2) \] ### Step 2: Evaluate Statement 1 Now we evaluate the first statement: \[ \int_{0}^{\frac{\pi}{2}} x \cot x \, dx \] We will use integration by parts. Let: - \(u = x\) \(\Rightarrow du = dx\) - \(dv = \cot x \, dx\) \(\Rightarrow v = \log(\sin x)\) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Thus, \[ \int_{0}^{\frac{\pi}{2}} x \cot x \, dx = \left[ x \log(\sin x) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx \] Evaluating the boundary term: At \(x = \frac{\pi}{2}\), \(\log(\sin(\frac{\pi}{2})) = \log(1) = 0\). At \(x = 0\), \(x \log(\sin x) \to 0\) as \(x \to 0\). Thus, the boundary term evaluates to \(0\): \[ \left[ x \log(\sin x) \right]_{0}^{\frac{\pi}{2}} = 0 - 0 = 0 \] Now substituting the value of \(\int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx\): \[ \int_{0}^{\frac{\pi}{2}} x \cot x \, dx = 0 - \left(-\frac{\pi}{2} \log(2)\right) = \frac{\pi}{2} \log(2) \] ### Conclusion Both statements are correct: 1. \(\int_{0}^{\frac{\pi}{2}} x \cot x \, dx = \frac{\pi}{2} \log(2)\) 2. \(\int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx = -\frac{\pi}{2} \log(2)\)

To solve the given problem, we will analyze both statements step by step. ### Step 1: Evaluate Statement 2 We start with the second statement: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx = -\frac{\pi}{2} \log 2 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi) x log sinx dx

Prove that : int_(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

int_(0)^(pi//2) x sin x cos x dx

int_(-pi/2)^(pi/2) |sin x| dx

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Evaluate : int_(0)^(pi/2)log(tanx)dx

int_(0)^(pi) [2sin x]dx=