Home
Class 12
MATHS
The greatest value of the fucntion f(x)=...

The greatest value of the fucntion `f(x)=sin^(-1)x^2` in interval `[-1//sqrt(2),1//sqrt(2)]` is

A

`pi/3`

B

`pi/2`

C

`-pi/2`

D

`pi/6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of the function \( f(x) = \sin^{-1}(x^2) \) in the interval \([-1/\sqrt{2}, 1/\sqrt{2}]\), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(\sin^{-1}(x^2)) \] Using the chain rule, we have: \[ f'(x) = \frac{1}{\sqrt{1 - (x^2)^2}} \cdot \frac{d}{dx}(x^2) = \frac{1}{\sqrt{1 - x^4}} \cdot 2x = \frac{2x}{\sqrt{1 - x^4}} \] ### Step 2: Set the derivative to zero to find critical points To find critical points, we set the derivative equal to zero: \[ \frac{2x}{\sqrt{1 - x^4}} = 0 \] This implies: \[ 2x = 0 \implies x = 0 \] ### Step 3: Evaluate the function at critical points and endpoints Now, we evaluate \( f(x) \) at the critical point \( x = 0 \) and the endpoints of the interval \( x = -\frac{1}{\sqrt{2}} \) and \( x = \frac{1}{\sqrt{2}} \). 1. **At \( x = 0 \)**: \[ f(0) = \sin^{-1}(0^2) = \sin^{-1}(0) = 0 \] 2. **At \( x = -\frac{1}{\sqrt{2}} \)**: \[ f\left(-\frac{1}{\sqrt{2}}\right) = \sin^{-1}\left(\left(-\frac{1}{\sqrt{2}}\right)^2\right) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] 3. **At \( x = \frac{1}{\sqrt{2}} \)**: \[ f\left(\frac{1}{\sqrt{2}}\right) = \sin^{-1}\left(\left(\frac{1}{\sqrt{2}}\right)^2\right) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] ### Step 4: Compare the values Now we compare the values obtained: - \( f(0) = 0 \) - \( f\left(-\frac{1}{\sqrt{2}}\right) = \frac{\pi}{6} \) - \( f\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{6} \) The greatest value of \( f(x) \) in the interval \([-1/\sqrt{2}, 1/\sqrt{2}]\) is: \[ \frac{\pi}{6} \] ### Final Answer The greatest value of the function \( f(x) = \sin^{-1}(x^2) \) in the interval \([-1/\sqrt{2}, 1/\sqrt{2}]\) is \( \frac{\pi}{6} \). ---

To find the greatest value of the function \( f(x) = \sin^{-1}(x^2) \) in the interval \([-1/\sqrt{2}, 1/\sqrt{2}]\), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(\sin^{-1}(x^2)) \] Using the chain rule, we have: ...
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|47 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

The greatest value of the function f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x in the interval [-1,1] is

The least value of the f(x) given by f(x)=tan^(-1)x-1/2 log_ex " in the interval "[1//sqrt3,sqrt3] , is

The function f(x)=sqrt(1-sqrt(1-x^2))

The greatest, the least values of the function , f(x) =2-sqrt(1+2x+x^(2)), x in [-2,1] are respectively

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

The greatest and the least value of the function, f(x)=sqrt(1-2x+x^(2))-sqrt(1+2x+x^(2)),x in(-oo,oo) are

The set of values of x for which the function f(x)=(1)/(x)+2^(sin^(-1)x)+(1)/(sqrt(x-2)) exists is

Verify Lagrange's Mean Value Theorem for the function f(x)=sqrt(x^(2)-x) in the interval [1,4] .

Verify Rolle's theorem for f(x)=sqrt(1-x^(2)) in the interval [-1,1].

The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(sin^(2)x+sinx+1) is

OBJECTIVE RD SHARMA ENGLISH-MAXIMA AND MINIMA -Section I - Solved Mcqs
  1. In the interval (0,pi//2) the fucntion f(x)= tan^nx+cot^nx attains

    Text Solution

    |

  2. The fraction exceeding its pth power by the greatest number possible, ...

    Text Solution

    |

  3. The greatest value of the fucntion f(x)=sin^(-1)x^2 in interval [-1//...

    Text Solution

    |

  4. The minimum value of the fuction f(x)=2|x-2|+5|x-3| for all x in R ,...

    Text Solution

    |

  5. The minimum value of the fuction f(x) given by f(x)=(x^m)/(m)+(x^(-...

    Text Solution

    |

  6. The largest term in the sequence an=(n^2)/(n^3+200) is given by (529)/...

    Text Solution

    |

  7. Let f(x)=ax^3+bx^2+cx+1 has exterma at x=alpha,beta such that alpha ...

    Text Solution

    |

  8. P=x^3-1/x^3, Q=x-1/x x in (1,oo) then minimum value of P/(sqrt(3)Q^2...

    Text Solution

    |

  9. Let f(x)=cos2pix+x-[x]([,] denote the greatest integer function). Then...

    Text Solution

    |

  10. Let f(x)=a-(x-3)^(8//9) then greatest value of f(x) is

    Text Solution

    |

  11. A function f such that f'(a)=f''(a)=….=f^(2n)(a)=0 , and f has a l...

    Text Solution

    |

  12. Let f(x)={{:(3x^2-2x+10, x lt 1),(-2,x gt 1):} The set of values of ...

    Text Solution

    |

  13. The maximum value of cos (int(2x)^(x^(2)) e^t sin^2 " t dt ")

    Text Solution

    |

  14. Let f (x)= {{:(1+ sin x "," , x lt 0),( x ^(2) -x+1",", x ge 0):}, the...

    Text Solution

    |

  15. Let f(x)=x^(n+1)+ax^n, "where " a gt 0. Then, x=0 is point of

    Text Solution

    |

  16. The greph of y=x^3+ax^2+bx+c has no extemun if and only if

    Text Solution

    |

  17. If f(x) =underset(x)overset(x^2)int(t-1)dt, 1 le x le 2 then the great...

    Text Solution

    |

  18. If the parabola y=ax^2+bx+c has vertex at(4,2)and a in [1,3] then the...

    Text Solution

    |

  19. Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

    Text Solution

    |

  20. Find a quadratic polynomial varphi(x) whose zeros are the maximum ...

    Text Solution

    |