Home
Class 12
MATHS
The greatest value of the fucntion f(x)=...

The greatest value of the fucntion `f(x)=sin^(-1)x^2` in interval `[-1//sqrt(2),1//sqrt(2)]` is

A

`pi/3`

B

`pi/2`

C

`-pi/2`

D

`pi/6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of the function \( f(x) = \sin^{-1}(x^2) \) in the interval \([-1/\sqrt{2}, 1/\sqrt{2}]\), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(\sin^{-1}(x^2)) \] Using the chain rule, we have: \[ f'(x) = \frac{1}{\sqrt{1 - (x^2)^2}} \cdot \frac{d}{dx}(x^2) = \frac{1}{\sqrt{1 - x^4}} \cdot 2x = \frac{2x}{\sqrt{1 - x^4}} \] ### Step 2: Set the derivative to zero to find critical points To find critical points, we set the derivative equal to zero: \[ \frac{2x}{\sqrt{1 - x^4}} = 0 \] This implies: \[ 2x = 0 \implies x = 0 \] ### Step 3: Evaluate the function at critical points and endpoints Now, we evaluate \( f(x) \) at the critical point \( x = 0 \) and the endpoints of the interval \( x = -\frac{1}{\sqrt{2}} \) and \( x = \frac{1}{\sqrt{2}} \). 1. **At \( x = 0 \)**: \[ f(0) = \sin^{-1}(0^2) = \sin^{-1}(0) = 0 \] 2. **At \( x = -\frac{1}{\sqrt{2}} \)**: \[ f\left(-\frac{1}{\sqrt{2}}\right) = \sin^{-1}\left(\left(-\frac{1}{\sqrt{2}}\right)^2\right) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] 3. **At \( x = \frac{1}{\sqrt{2}} \)**: \[ f\left(\frac{1}{\sqrt{2}}\right) = \sin^{-1}\left(\left(\frac{1}{\sqrt{2}}\right)^2\right) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] ### Step 4: Compare the values Now we compare the values obtained: - \( f(0) = 0 \) - \( f\left(-\frac{1}{\sqrt{2}}\right) = \frac{\pi}{6} \) - \( f\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{6} \) The greatest value of \( f(x) \) in the interval \([-1/\sqrt{2}, 1/\sqrt{2}]\) is: \[ \frac{\pi}{6} \] ### Final Answer The greatest value of the function \( f(x) = \sin^{-1}(x^2) \) in the interval \([-1/\sqrt{2}, 1/\sqrt{2}]\) is \( \frac{\pi}{6} \). ---

To find the greatest value of the function \( f(x) = \sin^{-1}(x^2) \) in the interval \([-1/\sqrt{2}, 1/\sqrt{2}]\), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(\sin^{-1}(x^2)) \] Using the chain rule, we have: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|47 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

The greatest value of the function f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x in the interval [-1,1] is

The least value of the f(x) given by f(x)=tan^(-1)x-1/2 log_ex " in the interval "[1//sqrt3,sqrt3] , is

The function f(x)=sqrt(1-sqrt(1-x^2))

The greatest, the least values of the function , f(x) =2-sqrt(1+2x+x^(2)), x in [-2,1] are respectively

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

The greatest and the least value of the function, f(x)=sqrt(1-2x+x^(2))-sqrt(1+2x+x^(2)),x in(-oo,oo) are

The set of values of x for which the function f(x)=(1)/(x)+2^(sin^(-1)x)+(1)/(sqrt(x-2)) exists is

Verify Lagrange's Mean Value Theorem for the function f(x)=sqrt(x^(2)-x) in the interval [1,4] .

Verify Rolle's theorem for f(x)=sqrt(1-x^(2)) in the interval [-1,1].

The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(sin^(2)x+sinx+1) is