Home
Class 11
MATHS
Simplify the following : (i) i^(97) ...

Simplify the following :
(i) `i^(97)`
(ii) `i^(8)`
(iii) `(1)/(i^(3))`
(iv) `(-i)^(14)`
(v) `i^(-22)`
(vi) `i^(-63)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify each part step by step: ### (i) Simplify `i^(97)` 1. **Rewrite the exponent**: \[ i^{97} = i^{96 + 1} = i^{96} \cdot i^1 \] 2. **Use the property of powers of i**: \[ i^{96} = (i^4)^{24} = 1^{24} = 1 \] (since \(i^4 = 1\)) 3. **Combine the results**: \[ i^{97} = 1 \cdot i = i \] ### Answer for (i): \[ i^{97} = i \] --- ### (ii) Simplify `i^(8)` 1. **Rewrite the exponent**: \[ i^8 = (i^4)^2 \] 2. **Use the property of powers of i**: \[ i^4 = 1 \implies i^8 = 1^2 = 1 \] ### Answer for (ii): \[ i^8 = 1 \] --- ### (iii) Simplify `(1)/(i^(3))` 1. **Calculate \(i^3\)**: \[ i^3 = i^2 \cdot i = (-1) \cdot i = -i \] 2. **Rewrite the expression**: \[ \frac{1}{i^3} = \frac{1}{-i} \] 3. **Rationalize the denominator**: \[ \frac{1}{-i} \cdot \frac{i}{i} = \frac{i}{-i^2} = \frac{i}{-(-1)} = \frac{i}{1} = i \] ### Answer for (iii): \[ \frac{1}{i^3} = i \] --- ### (iv) Simplify `(-i)^(14)` 1. **Rewrite the expression**: \[ (-i)^{14} = (-1)^{14} \cdot i^{14} \] 2. **Calculate each part**: \[ (-1)^{14} = 1 \quad \text{and} \quad i^{14} = (i^2)^7 = (-1)^7 = -1 \] 3. **Combine the results**: \[ (-i)^{14} = 1 \cdot (-1) = -1 \] ### Answer for (iv): \[ (-i)^{14} = -1 \] --- ### (v) Simplify `i^(-22)` 1. **Rewrite the exponent**: \[ i^{-22} = \frac{1}{i^{22}} \] 2. **Calculate \(i^{22}\)**: \[ i^{22} = (i^4)^5 \cdot i^2 = 1^5 \cdot (-1) = -1 \] 3. **Combine the results**: \[ i^{-22} = \frac{1}{-1} = -1 \] ### Answer for (v): \[ i^{-22} = -1 \] --- ### (vi) Simplify `i^(-63)` 1. **Rewrite the exponent**: \[ i^{-63} = \frac{1}{i^{63}} \] 2. **Calculate \(i^{63}\)**: \[ i^{63} = i^{62 + 1} = i^{62} \cdot i = (i^4)^{15} \cdot i^2 = 1^{15} \cdot (-1) = -1 \] 3. **Combine the results**: \[ i^{-63} = \frac{1}{-1} = -1 \] ### Answer for (vi): \[ i^{-63} = -1 \] --- ### Summary of Answers: 1. \(i^{97} = i\) 2. \(i^8 = 1\) 3. \(\frac{1}{i^3} = i\) 4. \((-i)^{14} = -1\) 5. \(i^{-22} = -1\) 6. \(i^{-63} = -1\) ---

Let's simplify each part step by step: ### (i) Simplify `i^(97)` 1. **Rewrite the exponent**: \[ i^{97} = i^{96 + 1} = i^{96} \cdot i^1 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Simplify the following (3i) (4i)

Simplify the following: i^6+i^8

Simplify the following: (-5i)(1/8i)

Simplify the following: (8i) (- 1/8 i)

Simplify the following (21)/(14i)

Find the values of the following : (i) i^(73) (ii) i^(-6) (iii) (1)/(i)

Simplify the following: (-i)(2i)(- 1/8i)^3

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)

Evaluate the followings : (i) i^(23) (ii) i^(-97)

Simplify the following (2−5i)+(−3+4i)+(8−3i)