Home
Class 11
MATHS
Evaluate the following: (i) .^(10)C(5)...

Evaluate the following:
(i) `.^(10)C_(5)` (ii) `.^(12)C_(8)`
(iii) `.^(15)C_(12)` (iv) `.^(n+1)C_(n)`
(v) `.^(14)C_(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the combinations given in the question, we will use the formula for combinations, which is: \[ nCr = \frac{n!}{r!(n-r)!} \] Now, let's solve each part step by step. ### (i) Evaluate \(^{10}C_{5}\) Using the formula: \[ ^{10}C_{5} = \frac{10!}{5!(10-5)!} = \frac{10!}{5! \cdot 5!} \] Now, we can simplify \(10!\): \[ 10! = 10 \times 9 \times 8 \times 7 \times 6 \times 5! \] Substituting this back into the equation: \[ ^{10}C_{5} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5! \cdot 5!} \] The \(5!\) cancels out: \[ = \frac{10 \times 9 \times 8 \times 7 \times 6}{5!} \] Calculating \(5! = 120\): \[ = \frac{10 \times 9 \times 8 \times 7 \times 6}{120} \] Calculating the numerator: \[ 10 \times 9 = 90, \quad 90 \times 8 = 720, \quad 720 \times 7 = 5040, \quad 5040 \times 6 = 30240 \] Now, divide by \(120\): \[ = \frac{30240}{120} = 252 \] So, \(^{10}C_{5} = 252\). ### (ii) Evaluate \(^{12}C_{8}\) Using the formula: \[ ^{12}C_{8} = \frac{12!}{8!(12-8)!} = \frac{12!}{8! \cdot 4!} \] Simplifying \(12!\): \[ 12! = 12 \times 11 \times 10 \times 9 \times 8! \] Substituting back: \[ ^{12}C_{8} = \frac{12 \times 11 \times 10 \times 9 \times 8!}{8! \cdot 4!} \] The \(8!\) cancels out: \[ = \frac{12 \times 11 \times 10 \times 9}{4!} \] Calculating \(4! = 24\): \[ = \frac{12 \times 11 \times 10 \times 9}{24} \] Calculating the numerator: \[ 12 \times 11 = 132, \quad 132 \times 10 = 1320, \quad 1320 \times 9 = 11880 \] Now, divide by \(24\): \[ = \frac{11880}{24} = 495 \] So, \(^{12}C_{8} = 495\). ### (iii) Evaluate \(^{15}C_{12}\) Using the formula: \[ ^{15}C_{12} = \frac{15!}{12!(15-12)!} = \frac{15!}{12! \cdot 3!} \] Simplifying \(15!\): \[ 15! = 15 \times 14 \times 13 \times 12! \] Substituting back: \[ ^{15}C_{12} = \frac{15 \times 14 \times 13 \times 12!}{12! \cdot 3!} \] The \(12!\) cancels out: \[ = \frac{15 \times 14 \times 13}{3!} \] Calculating \(3! = 6\): \[ = \frac{15 \times 14 \times 13}{6} \] Calculating the numerator: \[ 15 \times 14 = 210, \quad 210 \times 13 = 2730 \] Now, divide by \(6\): \[ = \frac{2730}{6} = 455 \] So, \(^{15}C_{12} = 455\). ### (iv) Evaluate \(^{n+1}C_{n}\) Using the formula: \[ ^{n+1}C_{n} = \frac{(n+1)!}{n!(n+1-n)!} = \frac{(n+1)!}{n! \cdot 1!} \] This simplifies to: \[ = \frac{(n+1) \cdot n!}{n!} = n + 1 \] So, \(^{n+1}C_{n} = n + 1\). ### (v) Evaluate \(^{14}C_{9}\) Using the formula: \[ ^{14}C_{9} = \frac{14!}{9!(14-9)!} = \frac{14!}{9! \cdot 5!} \] Simplifying \(14!\): \[ 14! = 14 \times 13 \times 12 \times 11 \times 10 \times 9! \] Substituting back: \[ ^{14}C_{9} = \frac{14 \times 13 \times 12 \times 11 \times 10 \times 9!}{9! \cdot 5!} \] The \(9!\) cancels out: \[ = \frac{14 \times 13 \times 12 \times 11 \times 10}{5!} \] Calculating \(5! = 120\): \[ = \frac{14 \times 13 \times 12 \times 11 \times 10}{120} \] Calculating the numerator: \[ 14 \times 13 = 182, \quad 182 \times 12 = 2184, \quad 2184 \times 11 = 24024, \quad 24024 \times 10 = 240240 \] Now, divide by \(120\): \[ = \frac{240240}{120} = 2002 \] So, \(^{14}C_{9} = 2002\). ### Final Answers: 1. \(^{10}C_{5} = 252\) 2. \(^{12}C_{8} = 495\) 3. \(^{15}C_{12} = 455\) 4. \(^{n+1}C_{n} = n + 1\) 5. \(^{14}C_{9} = 2002\)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise G|34 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise H|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise E|8 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: \ ^(12)C_(10)

Find the value of n: (i) .^(n)C_(10)=^(n)C_(16) (ii) .^(15)C_(n) =^(15)C_(n+3) (iii) .^(10)C_(n) =^(10)C_(n+2) (iv) .^(25)C_(3n) =.^(25)C_(n+1) (v) .^(n)C_(r) =.^(n)C_(r-2)

Knowledge Check

  • The 13 th term in the expansion of (9x-1/(3sqrt(x)))^(18),x gt0 is (i) ""^(18)C_(12)x^(3) (ii) ""^(18)C_(12)x^(6) (iii) ""^(18)C_(12)1/(x^(6)) (iv) ""^(18)C_(12)

    A
    `""^(18)C_(12)x^(3)`
    B
    `""^(18)C_(6)x^(6)`
    C
    `""^(18)C_(12)1/(x^(6))`
    D
    `""^(18)C_(6)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following : (i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20) (ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9) (iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25) (iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)

    Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."

    If .^(n)C_(10) = .^(n)C_(15) , then evaluate .^(27)C_(n) .

    Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

    If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

    Calculate the DU of following compounds : (i) C_(6)H_(6)ClBrO , (ii) C_(5)H_(9)N

    Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .