Home
Class 11
MATHS
""^(12)P(3) = ?...

`""^(12)P_(3) = ?`

A

210

B

455

C

2730

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(^{12}P_{3}\), we will use the formula for permutations, which is given by: \[ ^{n}P_{r} = \frac{n!}{(n - r)!} \] In this case, \(n = 12\) and \(r = 3\). ### Step 1: Apply the Permutation Formula Using the formula, we can write: \[ ^{12}P_{3} = \frac{12!}{(12 - 3)!} = \frac{12!}{9!} \] ### Step 2: Simplify the Factorials Next, we can simplify \(12!\) in terms of \(9!\): \[ 12! = 12 \times 11 \times 10 \times 9! \] Now substituting this back into our equation gives: \[ ^{12}P_{3} = \frac{12 \times 11 \times 10 \times 9!}{9!} \] ### Step 3: Cancel the \(9!\) The \(9!\) in the numerator and denominator cancels out: \[ ^{12}P_{3} = 12 \times 11 \times 10 \] ### Step 4: Calculate the Product Now, we need to calculate \(12 \times 11 \times 10\): 1. First, calculate \(11 \times 10\): \[ 11 \times 10 = 110 \] 2. Now multiply this result by 12: \[ 12 \times 110 = 1320 \] ### Final Answer Thus, the value of \(^{12}P_{3}\) is: \[ ^{12}P_{3} = 1320 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise I|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1|6 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise G|34 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of n if ""^(n) P_(13) : ""^(n+1) P_(12) =(3)/(4)

If ""^(12)P_(r)=""^(11)P_(6)+6""^(11)P_(5) then r is equal to

Find thevalue of 'r': (i) .^(12)P_(r) = 1320 (ii) 5.^(4)P_(r) = 6.^(5)P_(r-1)

If ""^(12) P_r =1320, find r.

If .^(n-1)P_3 :^(n+1)P_3 = 5 : 12, find n .

If P_(1), P_(2), P_(3) are the perimeters of the three circles, S_(1) : x^(2) + y^(2) + 8x - 6y = 0 S_(2) : 4x^(2) + 4y^(2) -4x - 12y - 186 = 0 and S_(3) : x^(2) + y^(2) -6x + 6y - 9 = 0 respectively, then the relation amongst P_(1), P_(2) and P_(3) is .............

Evaluate the following: (i) .^(9)P_(3) (ii) .^(10)P_(2) (iii) .^(12)P_(4)

The 12 numbers, a _(1), a _(2)………, a _(12) are in arithmetical progression. The sum of al these numbers is 354. Let P = a _(2) + a _(4) + ……………a _(12) and Q = a _(1) + a _(3) + ……..+a _(11) . If the ratio P :Q is 32:27, the common difference of the progression is

If y = m x +5 is a tangent to the curve x ^(3) y ^(3) = ax ^(3) +by^(3)at P (1,2), then

ABCD is a rectangle with A(-1,2),B(3,7) and AB:BC=4:3 . If P is the centre of the rectangle, then the distance of P from each corner is equal to